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Introduction

It is critical to price well reinsurance products. There are a lot of high risks that hang over

a reinsurers head, one natural catastrophe a�ects a whole portfolio. P&C Reinsurance has a

high-end market in term of risk pro�le assessment and pricing techniques, which requires

special modeling skills in order to have a proper view on the risk and its volatilities. The

job of the reinsurer is to diversify its risks so that a critical loss on a portfolio won’t a�ect

the company in a signi�cant way. To do that, the products have to be well priced.

As part of our �rst year of Masters degree at the EURIA, We were able to work collec-

tively on a project that allowed us, students, to apply the notions that we have learned in

class. The students are helped and tutored in this project by the professors of EURIA and

actuaries at the partner company. This projects gives the students the opportunity to be

introduced to the professional work as well as to work on real and concrete issues. This

year AXA Global P&C o�ered the students of the EURIA the opportunity to work on a

Bureau d’Etude named “P&C reinsurance modeling”.

The aims of our project are to estimate a pure premium on a speci�c portfolio of rein-
surance and to compare reinsurance programs that could be adapted to this portfolio. The

risks that we must price are related to earthquakes. In order to analyze these risks and to

price them we were given simulated data of claims caused by earthquakes. The data came

from multiple sources and had to be merged to get a full view of what we had to deal with.

In this report, we will �rst explain the basics of reinsurance as they are crucial to un-

derstanding our project. After having thoroughly presented the data and explained our

speci�c goals, we will describe the di�erent models that we applied on this data as well as

the results we got for each model, before comparing reinsurance programs that could be

adapted to our data.
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Chapter 1

Introduction to reinsurance

The use of the knowledge of reinsurance was critical to us because it gave us the in-

formation needed in order to fully understand the data that was examined as well as un-

derstanding how a reinsurance program can be implemented. In order to comprehend this,

we will see in this introduction to reinsurance the general principles involved but also its

origins and evolution over the years (understanding the mistakes made in the past and

how they were �xed can help us know what not to do in this program), the purpose of

reinsurance and its market and �nally we will discuss the most important part, the forms

of reinsurance.

1.1 De�nition and general principles

In essence, reinsurance can be de�ned as insurance for insurance companies to face

larger risks, that the insurance companies cannot handle by themselves. For example, in

the case a drought or an earthquake that would a�ect a lot of the portfolio, the insurance

companies transfer a part of those risks to reinsurance companies. It stabilizes the insurer’s

results. Reinsurance companies deal with professional corporate parties.

1.2 History

The �rst reinsurance transaction dates back to 1370. At that time, goods were exchanged

mostly by sea and the travels were insured against the risks, in particular against the risks
of piracy.

The �rst written reference of a reinsurance transaction was related to a maritime policy

covering the travel of goods from Italy to the Netherlands in 1370. The period of the trip

between Spain and the Netherlands was known to be the most dangerous and was reinsured
entirely. The insurer therefore only kept on its own account the part of the trip between

Italy and Spain.

2



1.3. PURPOSE CHAPTER 1. INTRODUCTION TO REINSURANCE

At the time, the contract was passed between the reinsurer and the insurer was more

of a bet or a gambling game than an insurance transaction in which the probabilities of

occurrence, the severity of the claim and the diversi�cation of risks are taken into account.

Reinsurance is performed since the XIVth century under the facultative form. For each

object that the insurer underwrites, he has the choice to ask for the help of a reinsurer and

this reinsurer has the choice to accept or not the risk.

Starting in the beginning of the XIXth century, reinsurance treaties were also used for

risks of �re and in the middle of the XIXth century treaties of life reinsurance were in-

troduced. In the beginning, it was insurance companies that operated on the insurance

market. The business was primarily proportional reinsurance treaties. Reinsurance evolved

tightly with industrialization, due to the facts that that machines were so expensive, the

bigger concentration of value in developing cities and the amelioration of transportation

means which required higher covers than that only specialized reinsurers could handle and

that were capable to spread the risks over multiple countries.

The �rst obligatory insurance treaty that covered all the risk of a speci�c portfolio, was

reached in 1821 between La Royale de Paris and Les Propriétaires Réunis de Bruxelles. It

regarded reinsurance under the reciprocal form. The two players exchanged their risks to

have a better diversi�cation of their portfolio. However, reinsurance was not their principal

job. In 1846 was founded the �rst independent reinsurance company called the Kolnische

Ruckversicherungsgesellschaft. It was born after a �re devastated the city of Hamburg in

1842. At this point the insurer realized that it was impossible to conserve by themselves

risks that could accumulate so much. A geographical and time diversi�cation was neces-

sary. That is how the �rst professional reinsurance company was created.

From the 1950s, the reinsurance methods started becoming more sophisticated and fol-

lowing the non-professional reinsurers stared disappearing. Through the years, the reinsur-
ance companies created more and more regulations to stay solvable in all circumstances.

1.3 Purpose

A reinsurance treaty is bought by an insurance company (or ceding company as they

cede the risks) from a reinsurance company. The roles of a reinsurer company are to: protect

the own funds of the insurer against the gap in results, contribute in improving the solvency
margin of the insurer, increase the possibilities of underwriting, decrease the need of funds

of the insurance company and help in a better monitoring of the risks. Reinsurance provides

coverage for all kinds of risks. The reinsurance companies diversify the risks by having a

portfolio spread over risk and geography.

The reason that insurance companies purchase reinsurance is to remove the �nancial

responsibility of the risks that they took on. It allows them to free economic and risk capital
that they put aside to pay for the losses, worry less about the solvency challenges that they

3



1.4. REINSURANCE MARKET CHAPTER 1. INTRODUCTION TO REINSURANCE

face as well as reduce their probability of bankruptcy. They help in stabilizing insurance

by absorbing some of their losses. By doing so, it allows for the companies to reduce their

risk exposure and their own capital requirement.

With the help of reinsurance, insurers can face the risks of today and stay solvable

as well as keep prices a�ordable for new clients. Clients (insurance companies) have an

incentive to purchase reinsurance mostly if the risk that they carry are high or volatile or

if they are specialist insurer with a relatively small scope of diversi�cation in their risks.
In those cases, they rely heavily on reinsurance.

1.4 Reinsurance market

Today, there is around 200 companies that o�er reinsurance worldwide, most of which

are specialist reinsurers. Germany, Switzerland and the US host the biggest reinsurance
companies. However, there are also well large insurance companies that also o�er reinsur-
ance business (such as AXA with AXA Global P&C). In 2016, the reinsurance shareholders’

funds are estimated around 338 billion USD, this shows that the reinsurance market has a

strong capital base allowing reinsurance companies to take on very large and complex risks.
Many developing countries rely particularly on reinsurance because they are very sensitive

to natural catastrophes.

The reinsurance market has been proven to be quite stable as it has handled major

disasters such as the many natural catastrophes that occurred in 2011 (the tsunami and

Fukushima in Japan, the �oods in Thailand as well as the hurricanes in the US and many

more). The reason for this stability is the broad geographical range of the risks.

1.5 Forms of reinsurance

1.5.1 Legal criteria

1.5.1.1 Obligatory reinsurance

A treaty, or obligatory reinsurance is the situation where an insurer has to cede a portion

of the risk of all the policies in a portfolio (such as car policies, health insurances policies. . . )

to the reinsurer, and the reinsurer has to accept the risk. It is the most common form of

reinsurance.

Obligatory reinsurance allows the insurance and the reinsurance company to have long

term relationships as the reinsurer must accept every new risk that the insurer has, it is

automatically accepted by the terms of the contract. Both parties have to cede or accept

any risks that are covered in the treaty they agreed on, they cannot exclude a risk if it �ts

within the terms of the contract. Because the treaties work automatically, it is easier for

the administration to have a obligatory treaty, but also increases the risks of insolvency.

4



1.5. FORMS OF REINSURANCE CHAPTER 1. INTRODUCTION TO REINSURANCE

1.5.1.2 Facultative reinsurance

Facultative reinsurance uses a case by case approach. The insurer has the option to

reinsure or not the risk and the reinsurer has the option to accept or not the risk. The

reinsurer and the insurer negotiate each contract. It is usually used for large, unusual

or catastrophic risks such as a building that are exposed to many di�erent hazards. The

reinsurance has to be acquainted with all the risks that this building carries. Thus it has to

be treated separately from other insured objects. Today facultative reinsurance is used as

an additional cover to some of the risks already covered by obligatory treaties.

1.5.2 Technichal criteria
Both facultative and obligatory reinsurance can be proportional or non-proportional.

1.5.2.1 Proportional reinsurance

A proportional treaty is an agreement between a reinsurer and a ceding company (the

reinsured) in which they divide proportionally the liability as well as the premium. The

ratio which the reinsurer takes is de�ned in the contract and in the case of the loss, the

amount the reinsurer will have to pay is proportional to the amount of the loss. The rein-

surer also compensates the insurer by what is called the reinsurance commission, the equva-

lent of a percentage of the premium.

Quota share Quota-share is the simplest form of proportional reinsurance. The reinsurer

takes an agreed percentage of all the policies written by the insurer. The losses work the

same way, the reinsurer will have to pay that percentage of the amount of the claim in case

of a loss. This type of reinsurance is ideal for homogeneous portfolios such as house or

car insurance.In the case of quota-share reinsurance, the reinsurer will always have to pay

when a claim occurs even if it’s just a little bit. The portion of the risk that the reinsurer

takes is called the ceded risk and what the insurer keeps for himself is called the retention.

Quota share reinsurance can be helpful for insurers who are seeking capital relief or

want to protect themselves against �uctuations in a portfolio or in�ation. However it isn’t

the best protection for an insurer because in case of an extreme loss or an accumulation of

loss, the insurer will still have to pay a percentage of all of it. As a result, the insurer might

have to take another reinsurance coverage to protect itself from the extreme losses, it might

therefore be useful to combine Quota-share reinsurance with another type of reinsurance.

Surplus share Surplus share is the most common kind of proportional reinsurance. The

primary insurer takes the risk up to a certain amount that is speci�ed in the in the contract

and the reinsurer must pay the surplus that exceeds the set amount called the retention
whereas in case of a loss with quote part reinsurance, the reinsurer will have to pay starting
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1.5. FORMS OF REINSURANCE CHAPTER 1. INTRODUCTION TO REINSURANCE

from the �rst dollar of the loss. It still works in proportions but they are calculated with the

price of the policy and the retention of the insurer. There can be a limit to the surplus share
and this limit is the maximum amount of liability the reinsurer is prepared to take on. It is

called a line, it is the amount the insurer keeps as a risk for himself, so we would say that a

two line surplus is when the reinsurer assumes coverage of twice what the insurer keeps.

This kind of reinsurance is mostly useful to cover the largest risks in a portfolio. It is more

�exible than Quota-share reinsurance however it takes more ‘administration’.

1.5.2.2 Non-proportional reinsurance

Non-proportional reinsurance emerged in the 1970s at a time where insurance companies

were getting stronger and were able to handle more frequent small risks. They had to �nd

a way to reinsurer only the larger risks and accumulated losses, that could bankrupt the

insurance company. Non-proportional reinsurance has no �xed division of the premium and

the claims. This form of reinsurance reimburses only for the losses that are above a �xed

amount. The reinsurer remains solely liable if a loss exceeds this amount.

All the losses that are below this amount are at the charge of the insurer. The �xed

amount is called the priority. The advantage of non-proportional reinsurance is that the

priority re�ects the capacity to bare of the insurer, and the administration costs are rela-

tively low seeing they don’t have to calculate the proportions for each risk.

Excess of loss Excess of loss is the most common kind of non-proportional reinsurance.
It can be set on individual risks or occurrence. When the excess of loss is for each risk,

the reinsurer pays the amount of the loss for every single policy that has been a�ected.

Its participation in each claim is limited by the cover speci�ed in the contract. The risks
that are usually insured by excess of loss are for when a single building burns down or an

accumulation of loss due to one event (a storm, �ood, . . . ).

This kind of reinsurance is e�ective for risk mitigation against large single losses. Catas-

trophe excess of loss is a program that takes into account all the aggregate losses caused

by one event within the reinsurance treaty.

Stop loss Stop loss is a less frequent form of reinsurance. This kind of treaty reinsurance
covers only a part of the annual loss of the insurer that exceeds a certain amount. It is

mostly for insurers to protect itself from �uctuations in claim between the years. It usually

only comes into play when the insurer has su�ered a terrible loss, so when the claims

exceeds the premium received by the primary insurer.
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Chapter 2

Data

2.1 Data description

The object of this project is to try and �nd a reinsurance program for some simulated

data. The data that we received is in reference to the results of earthquakes on insured

property. Firstly, we took the time to analyze and understand the data. The dataset that

we were given was split into three separate �les. Our �rst task was to �nd the similarities

in the three datasets in order to merge them.

The �rst dataset that we had was called SiteInfo. In this dataset there is about 1.5 million

entries, in �gure 2.1 you can see the �rst �ve lines of this table, this dataset contains :

– LOCNUM : a number that represents the location of the insured property,

– BLDGCLASS : the type of construction,

– OCCSCHEME : the occupation scheme,

– YEARBUILT : the year that the building was built, if the information is missing, the

number 9999 was imputed,

– gshap : the global seismic hazard assessment program, it gives an indication of the

risk that is present in the speci�c zone.

Figure 2.1: SiteInfo table
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The second dataset we were given is named Exposample, We can �nd around 3000
entries, in �gure 2.2 you can see the �rst �ve lines of this table, this dataset contains :

– Id : the number representation a speci�c event,

– RoofType : the type of roof, for example : �at roof, tiled roof, . . . ,

– StructureType : the structure of the building (what it is made of) such as concrete,

steel frame, masonry, mobile home, . . . ,

– OccupancyType : the type of occupant in the building such as retail trade, commercial,

hotel, wholesale trade, . . . ,

– YearBuilt : the year the building was built,

– NumStories : the number of �oors in the building,

– FloorLevel : the �oor on which the insured property is located,

– InsuredValue : the value of the insured property.

Figure 2.2: Exposample table

The �nal dataset we recived is called the EventLossTableBySite, there are around 1.5
million entries, in �gure 2.3 you can see the �rst �ve lines of this table, the variables present

in this dataset are :

– LocID : a number representing a location,

– EventID : the number associated to each event,

– Loss : the loss incurred in a damage,

– Freq : the frequency at which seismic disaster occur in that location,

– LocationID : another number representing a location,

– ContractID : the number of the contract of reinsurance,

– LocationName : another number to represent the location of the building.

Figure 2.3: EventLossTableBySite table
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2.2 Data visualization

In order to have a good look at the data we were given, we �rst created a few graphs

to see what the elements of the data that were missing as well as what kind of values we

were given. We will present this data in the form of di�erent graphs in order to get an

idea of what our data represents. We will present each variable’s distribution and then plot

this variable against the Log-PurePremium where : PurePremium = Loss×Frequency,

because PurePremium will later be our target variable (see chapter 4).

We �rst analyzed the data that was missing from our database, in most of the columns

there was some information missing. The missing data is summarized in �gure 2.4. We

can observe that the variables RoofType, NumStories and FloorLevel have more than 80%
of the information missing. They will therefore be challenging to include in the models.

The variable YearBuilt has above 50% of missing data which will also be challenging but

more manageable and lastly, the other variables have under 10% of missing data, and are

thus workable into our dataset.

Figure 2.4: Missing data

After the analysis of the missing data we decided to look at the frequency and distri-

bution of the variables.

The �rst variable we want to look at is the Loss as it is the value that is critical in

estimating the pure premium. The loss variable has a mean of $30, 170 and ranges from $7
to $63, 720, 000.
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Figure 2.5: Histogram of the Loss

As we can see in �gure 2.5 the histogram is not very useful due to very few large values

and a high number of small values. Thus, in �gure 2.6 we can observe the logarithm of the

loss incurred in order to see better the extent. The distribution of the log-loss is more useful

that way because it can be interpreted as di�erent distribution function, such as a normal
distribution.

Figure 2.6: Histogram of the Log-loss

The second variable we looked at was the roof type. We know that this variable can be

important because a �at roof has a higher chance of collapsing in the case of an earthquake.

By looking at �gure 2.7, we can notice that not taking into account the missing data and
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the unknown (which is the same as NA), tiled roofs are more common (11% of the time),

there are 286 tiled roofs in the data, than �at roofs (5% of the time), there are 131 �at roofs

in the data. However there is too much data missing to concur anything.

Figure 2.7: Frequency in the RoofType variable

In �gure 2.8, we can observe a box-plot of the roof types against the Pure Premium.

We can see that a �at roof incurs a bit more premium than a tiled roof, however since

there are so few information in this variable, it is only speculation. A reason why this

di�erence might be, is the structural integrity of some countries. In countries that are

prone to earthquakes, it is common to have more �at roofs. For example in Taiwan the

majority of the roofs are �at. In this type of countries the PurePremium would be higher.

Figure 2.8: Boxplot of the Log-PurePremium against RoofType
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For the StructureType variable, we noticed with �gure 2.9 that the reinforced concrete

structure is dominant with 95% of the types. Steel frame in second with only 4% and all

the other structures combined represent just 1%. From this information we can make the

hypothesis that this variable can be useful in estimating the loss, there may be a structure

type that incurs a larger loss because it is less stable or the material is more expensive.

Figure 2.9: Frequency in the StructureType variable

The box-plot in �gure 2.10 shows that the pure premium is spread thoroughly when

the structure is reinforced concrete, as for other structure types, steel frame incurs lower

premiums as well as higher premiums while just steel incurs higher premium. This might

be due to the price of this material.

Figure 2.10: Boxplot of the Log-PurePremium against the StructureType
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It is in the OccupancyType variable that we saw the most diversity. As we can see in

�gure 2.11, the most abundant occupancy types are general commercial with 31% and retail

trade with 23%. The plurality of this variable can give us an idea of what kind of occupants

are more costly in the case of a disaster which will helps us in pricing the premium.

Figure 2.11: Frequency in the OccupancyType variable

The following box-plot (�gure 2.12) shows that there is indeed diversity in theOccupan-
cyType, and it is hard to see whether an occupancy type incurs a larger PurePremium than

another type. We can see that general commercial has the larger spread and has the more

extreme values, while parking has the lowest value however we know that this is because

there is only one observation for parking and we can speculate that a parking structure

doesn’t need much construction and structure, so the PurePremium would be inferior.
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Figure 2.12: Boxplot of the Log-PurePremium against the OccupancyType

The year of construction can indicate us whether older buildings might be more prone

to disasters than more recent buildings or if they were build sturdier than newer buildings.

As shown in �gure 2.13 there is mostly missing values but otherwise, most buildings were

built in 1980.

Figure 2.13: Frequency in the YearBuilt variable

Figure 2.14 demonstrates that the year that the building was built doesn’t a�ect much

the PurePremium incurred, however we can see that the later constructions (after 2010)

seem to have smaller premiums, this might be because the norms for buildings are more

regulated in recent years so they are less likely to provoke a large loss or just that there are

not enough observations in the later years to see a large spread.
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Figure 2.14: Boxplot of the Log-PurePremium against the YearBuilt

The number of �oors in the building can vary quite a bit as seen in �gure 2.15. There are

most commonly 5 �oors in the building and then 1 �oor, we also see that there can be up

to 15 �oors in a building which increases the risks of loss when a disaster strikes because

higher �oors are more prone to destruction in the case of an earthquake.

Figure 2.15: Frequency in the NumStories variable

The following box-plot displays that the number of stories doesn’t seem to a�ect much

the PurePremium because the higher premiums are when there are 1 or 3 or 15 stories.

These numbers seem random. We could speculate that very tall buildings and very small

buildings have the biggest PurePremiums because there are more prone to risks.
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Figure 2.16: Boxplot of the Log-PurePremium against the Numstories

The business insured can be located on any �oor. In �gure 2.17, we notice that most

of the insured properties are located on the �rst �oor of the building and a bit less likely

on the second �oor, there are few of the insured properties on the other �oors. The fact

that they are mostly located on the �rst �oor might be because they are stores and stores

usually have a storefront on the ground level (we are making the hypothesis that the �oors

are numbered the American way, so the �rst �oor is actually the ground �oor). With this

information we can try to understand the di�erent PurePremium due to the �oor location

of the insured property, but for that we will need to �gure out a solution for the NAs.

Figure 2.17: Frequency in the FloorLevel variable

17



2.2. DATA VISUALIZATION CHAPTER 2. DATA

When the insured property is on the �rst �oor, that is when the spread of PurePremium
is the highest as seen in �gure 2.18. This might be because if a building collapse the �rst

�oor will be completely destroyed by the debris of the rest of the building.

Figure 2.18: Boxplot of the Log-PurePremium and the FloorLevel

We �nally analyzed one of the most important variable in our dataset, the insured value.

The mean insured value is of 27.78 million dollars. The median insured value is of $6.958
million. All the other insured values range between $9, 940 and $3.033 billion. This shows

us that there is a wide range of insured value with a few really elevated values. In �gure

2.19 we can see the distribution of the insured value. However there are too many small

values to see the distribution well.

Figure 2.19: Histogram of the Insured Value
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In �gure 2.20, shows a histogram of the logarithm of the InsuredValue. It represents

better the spread of the losses than just a histogram of the InsuredValue because of the

few very large claims. The large spike that we can observe the log-InsuredValue of 10.92
is the insured value $55, 760 that is present 110 times in our data. They are all general

commercial and all of the other values are missing for this InsuredValue. We can speculate

that this could be for example a chain of stores so all the insured values are the same, but

this over present value might be due to another feature.

Figure 2.20: Histogram of the Log-InsuredValue

Figure 2.21 shows plot of the Log-InsuredValue against the Log-PurePremium. Before

plotting this we suspected that these values would be correlated because a higher insured

value would lead to a higher PurePremium. The green line represents a linear regression

between the Log-Insured Value and the Log-PurePremium and we can clearly see that it

does follow this pattern.
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Figure 2.21: Plot of the Log-PurePremium against the Log-InsuredValue

The global seismic hazard assessment program in our dataset ranges from 0.9006 to

6.2089 with a mean of 3.2914. In �gure 2.22, the spread of the gshap variable is represented.

It is noticeable that each spike is after an integer, the values are otherwise spread equally

from one to six except for occasional spikes.

Figure 2.22: Spread of the gshap variable

Figure 2.23 shows that the PurePremium is distributed over all the values of the gshap,

we cannot see a pattern with higher premiums where the gshap is higher. This can be

because zones with higher seismic risks are better prepared for earthquakes with buildings

that are more adapted. The green line represents the linear regression between the gshap
and the Log-PurePremium.
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Figure 2.23: Plot of the Log-PurePremium against the gshap

2.3 Conditioning of the data

In a �rst step, we combined all the datasets together, the result of this merge is a table

with 2, 965 entries and 16 variables. To combine the data, we found the columns that had

the same signi�cance, LocationName and LocationID and we merged the lines. This allowed

us to have a table containing all the data needed for this project. We can see a excerpt of

this data in �gure 2.24

Figure 2.24: A part of the full data table

This �rst step led us to look more closely at the data to �nd out if any abnormal values

or outliers were present in the dataset, if we had to treat the NAs and if we had to delete

entries or variables due to a lack of information.
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2.3.1 Variables conditioning
We �rst analyzed the data to understand what we were dealing with, such as if there

were any missing data, if there were data lines that seemed out of the ordinary, errors or

other problems in the data. We noticed that they were two YearBuilt columns so we deleted

the one that was harder to work with (the format was more complicated). We also deleted

the OCCSCHEME column because it gave the same information as OccupancyType but less

attainable. We also deleted the lines that were duplicates. In �gure 2.25, we can see what

the data looks like after these modi�cations.

Figure 2.25: Data with deleted variables

In a second phase we deleted all the lines where InsuredValue was missing (there were

268). This was done because these rows would be too hard to analyze with certain impor-

tant information missing.

2.3.2 NAs conditioning
The �rst method that we tried to condition the NAs was to remove them completely

from the dataset (delete the lines with NAs) but as we have seen in �gure 2.4 in a few

variable such as RoofType, there are too many values so by removing the lines with NAs
we would remove more than 80% of the dataset so we decided �nd a di�erent approach.

Another method we tried was to remove these missing values only for the variables with

less than 50% of missing values. However once again, we decided that it would remove too

much relevant information from our database. We therefore decided to move on to another

method than removing the NAs.

The second method we tried to remove of the NAs was to rename them so that they

could become a modality. We renamed every value that was missing by “VM”. We used this

modi�ed database for the estimations of the loss however as we ran the di�erent models

we realized by creating this new modality it it did not give us good results since in some
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variables such as roof RoofType there is more than 80% of “VM” which made the predomi-

nant result “VM” and as this value doesn’t re�ect anything. We therefore decided to move

on to another approach. Due to this we learnt that the best method to take care of the

NAs was an imputation method, a method allowing us to replace the missing value by an

appropriate value.

The last method we worked on and decided to use in the estimation of the rate is the

MICE method or Multivariate Imputation by Chained Equations. This method was created

for complex databases with missing data. The MICE method is quite useful when there

are values missing in more than one variable since most of the imputation methods only

impute in one variables at a time and have to be done over and over again on the other

variables.

The main hypothesis of this model is that the missing values must be missing at random
(MAR), it means that the propensity for a value of the data to be missing is not related to the

missing data, but it is related to some of the observed data. It can be missing not at random
(MNAR) however it would need more modeling assumptions which would in�uence the

generated imputations.

The MICE method method is done by iterations over the data. It takes as an entry a

estimation model to impute the values (such as a regression tree (see section 3.1.1) or a

random forest (see section 3.1.2)). It starts with an initial imputation : it enters, in place

of the missing value, the value that is the most common in that column if it is qualitative

and the average if it is quantitative. Then it moves on and does the same for all the other

variables with missing values in the database starting with the one that has the fewer

missing values and goes in increasing oreder.

On the second iteration, it will run the speci�ed estimation model on the �rst variable

(the one that had the fewest missing values) of the data where there were missing values,

it will then impute the values predicted by this method and moves on to the next variable

where there were missing values and does the same. It will go so on over the whole database

for the speci�ed number of iterations. There after is the detailed algorithm explaining the

process.
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Algorithm 1 MICE imputation algorithm

Y a data set of n variables Y1, ..., Yn ;

K the number of iterations ;

φ a chosen estimation model ;

yobsi observed values, and ymissi missing values for Yi, i = 1, ...n ;

Sort the Y columns by inscreasing number of missing values ;

First naive completion :

for i = 1 to n do
if Yi quantitative then

ymissi =
1

N

n∑
i=1

yobsi (average value)

end
if Yi qualitative then

ymissi = ȳobsi , whith x̄ the mode of x (most common value)

end
end
Iterative imputation :

for k = 1 to K do
for i = 1 to n do

Adjust yobsi in function of all the other variables using the chosen model φ.

Impute ymissi by the values predicted with the adjusted model.

end
end

The �gure 2.26 bellow illustrates that while there is quite a bit of missing data, there

seems to be no pattern in the missing data, meaning that it is missing at random. We can

observe in the rightmost graph, that the pattern always changes in the missing values,

for example there never is two variables where the values are always missing together

or values that are there only when values of another variable aren’t. That is the most

important hypothesis in applying the MICE method.
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Figure 2.26: Histogram of the missing data with the patterns

With the previous �gure we therefore conclude that applying this method is possible.

We applied the MICE method with the random forest model (see section 3.1.2). We chose

random forest since it is a very useful method for databases that have a lot of qualitative

variables such as ours. The number of iterations that we chose is 20. The results of this

method were very good, so we used the database modi�ed by MICE in the estimation of

the rate.
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Chapter 3

Models theory

In this chapter we will present the models that we will use in the next chapters to

predict pure premium.

3.1 Presentation of the models

3.1.1 Regression trees
The data consists of p observations of variables Xi and one variable to explain Y , with

m modality, observed over n individuals. When the variable to explain is quantitative, the

trees are called regression trees.

Construction of the tree The construction of a regression tree consists in determining

a sequence of nodes. A node is de�ned by the choice of a variable among the predictor

variables and a division of the data in two classes. Each node corresponds to a sub-space

of the sample.

The division is de�ned by a threshold value of the quantitative variable chosen or by a

modality if the variable is qualitative. At the root there is the whole data ; the procedure is

iterates at each of the sub-spaces.

The algorithm needs : a criteria that allows to pick the best division among all the ones

that are eligible for the di�erent variables, a rule that allows to decide that a node is terminal

(because a tree that is too detailed may lead to over-�tting which is unstable and can result

in bad predictions), then it becomes a leaf, the algorithm also need the assignment of each

leaf to a value (the estimation of the variable to explain).

Division criterion A division is eligible if none of the two nodes that are created from

this division is empty. The goal is to divide the individuals into groups that are as homo-

geneous as possible. The heterogeneity can be measured by function that must be : null if
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the node is homogeneous, and maximal when the values of Y are very dispersed (see the

paragraph “criteria of homogeneity”).

The division of the node i creates two “o�springs” right and left, they will be noted

(i+ 1) and (i+ 2), among all these eligible divisions of the node i, the algorithm holds the

one that minimizes the sum C(i+1) + C(i+2), with Ci the cost function of the node i (see

paragraph “criteria of homogeneity”).

Stopping rule and estimations The growth of the tree stops at a given node, which

becomes a leaf when the node is homogeneous meaning that there exist no more eligible

divisions or when the number of observations in the node is inferior to a chosen threshold.

Then at each leaf is associated a value: the means of the observations associated to that

leaf.

Criteria of homogeneity We consider the general case of a division in J classes. There

are n individuals and J classes of size nj ; j = 1, ..., n with n = ΣJ
j=1nj , we note i =

1, ..., nj the individuals of the class j, and yij the value of Y on the (i, j) individual.

The cost function of the class j is de�ne by :

Cj =

nj∑
i=1

(yij − y.j)2, with y.j =

nj∑
i=1

yij

The cost function of the division is de�ned by :

C =
J∑
j=1

Cj =
J∑
j=1

nj∑
i=1

(yij − y.j)2

It is the intra-class variance, also called heterogeneity, that is worth H = 0 if and only

if yij = y.j for all i and all j.

The di�erence in heterogeneity between the non-shared space and the shared-space

along the division J is :

δ =
J∑
j=1

nj∑
i=1

(yij − y)2 −
J∑
j=1

nj∑
i=1

(yij − y.j)2 =
J∑
j=1

nj(y − y.j)2, where y =
1

n

J∑
j=1

nj∑
i=1

yij

In our case, for J = 2, we get δ = n1n2(y.1 − y.2)2.

The goal at each step is to maximize δ this means �nding the variable that gives a

division in two classes associated to a minimal intra-class variance.
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Pruning The goal is to �nd an intermediate tree, for this we build a sequence of J pruned

sub-trees from the saturated model, which corresponds to a sequence of nested divisions.

We obtain this sequence by minimizing a penalized criterion from all trees T pruned from

the saturated model Tmax.

∀α ≥ 0, Critα(T ) =
1

n

n∑
i=1

(yi − ŷT,i)2 + α|T |

Where |T | is the number of families (also the number of branches) of T and ŷT,i is the

value predicted byT for individual i. By minimizingCritα(T ) and increasing progressively

α, we would receive a sequence of sub-trees having less and less leaves. Breiman o�ers two

solutions : it is possible to either use a testing sample independent from the data or proceed

by cross validation.

We retain the tree Tj , j ∈ {1, 2, . . . , J} such as

1

nt

nt∑
i=1

(ỹi − ỹTj ,i)2 be minimized.

Figure 3.1: Exemple of regression tree for predicting price of 1993-model cars
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3.1.2 Random forest
In the speci�c case of CART (Classi�cation And Regression Trees) models, Breiman pro-

posed a new bagging method called Random Forest. The main objective was to make the

trees more independent from one another by adding a random choosing of the variables

in the trees. This approach seems successful in the situation in which the data is highly

multidimensional.

Random forest is a machine learning modelization technique that works with standard

decision trees and leads it to the next level by combining the trees in order to get di�erent

outlook on the data. The random forest give an average of all the nodes that are reached

in the several trees.

This model is called random because each of the decision tree will get a random sample

of the data and so the trees will each work on their set of data to provide a result and not

all the variables are included into the trees so that the di�erent trees might have di�erent

variables which o�ers diversity. Given Y the variable to explain, X1, ..., Xp
the predictor,

the random forest algorithm is as follows :

Algorithm 2 Random Forest algorithm

x0 the observation to predict ;

n the number of observations ;

dn the sample ;

N the number of trees ;

m ∈ N∗ the number of variables randomly sampled.

for k = 1 to N do
Pick a bootstrap sample (random sample with replacement) in dn.

Build a tree on this bootstrap sample on a set of m variables randomly sampled from p
variables, we write h(., k) the tree built.

end

Result: h(x0) =
1

N

N∑
k=1

h(x0, k).

The fact that only m predictors are chosen at each step can increase considerably the

diversity of the trees by putting forward other variables. Each regression tree is, of course,

useful but the combination of all the trees makes this model even stronger. The choosing

of the variables m is very sensible and must be done well. The default parameters is :

m = p/3 (in the regression case).

One of the advantages of a random forest is that it can deal with the missing data and

still manage to be very accurate, the bias in this algorithm is the same as the one for a

single decision tree and �nally it can give an estimation of the most important variables in

the database.
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Figure 3.2: Example of random forest

3.1.3 Generalized Linear Model
The Generalized Linear Model (GLM) is a generalization of the linear model, it is a

smoother version of the linear regression. However, in the GLM, the errors can have a dif-

ferent distribution model than the normal distribution. In contrast with the linear model,

the GLM uses a link function to transform the variable to explain. In a GLM, the dependent

variable Y is generated by a distribution in the exponential family (such as normal, bino-

mial, poisson and gamma distributions). The link function gives us a relationship between

the mean of the distribution and the linear parameter.

The transformed variable to explain can be written : f(y) = β0 +
∑

βixi + u, where f

is the link function. The models belong to the Generalized linear models are composed of

three components :

RandomComponent The random component is the probability distribution of the vari-

able to explain. It is under the form :

f(y, θ, φ) = exp

(
yθ − v(θ)

u(φ)
+ ω(y, φ)

)
The distribution of Y comes from an exponential family. The parameter θ is called

natural parameter, φ is the dispersion parameter that is used to adjust the variance of the

model to the observed one.

30



3.1. PRESENTATION OF THE MODELS CHAPTER 3. MODELS THEORY

Deterministic component The linear predictor or deterministic component of the model

is the vector with n components :

η = Xβ = β0 +

p∑
i=1

Xiβi

Where β = (β0, β1, β2, ..., βp) is the vector of unknown coe�cients that we want to

estimate, β0 is a constant and Xi the predictor variables.

The link function The expectation of the random part E(Y |X = x) depends on the

deterministic component η = Xβ through a link function, that is monotonous and di�er-

entiable.

g(E(Y |X = x)) = η = Xβ

E(Y |X = x) = g−1(η) = g−1(Xβ)

3.1.4 Logistic regression
Logistic regression is a binomial regression model, as in other regression models, its

purpose is to explain the e�ect of a vector X on a variable to explain Y . However in a

logistic regression the variable Y is a binomial variable, a qualitative variable with two

modalities: success or failure. The valuesX don’t have to be binary. The objective is to try

and explain the probabilities :

π = P(Z = 1) or 1− π = P(Z = 0)

In order to do that, we take a function f : [0, 1] → R, we therefore look for a linear

model that has the form f(πi) = xiβ There are three functions that ful�ll the previous

demands.

– The �rst one is probit, then f is the inverse of the Gaussian distribution function,

– The second one is log-log with :

f(π) = log(− log(1− π))

– The last one is logit :

f(π) = logit(π) = ln

(
π

1− π

)
, with f−1(x) =

ex

1 + ex

The model the most commonly used is the model with the function logit, because it

brings simpli�cations in the estimation, it is a generalized linear model with the link logit.
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3.1.5 Support Vector Machine
The Support Vector Machine (SVM) is a classi�cation method. It was initially a model

that predicted a binary variable, meaning a discrimination into two classes, this model has

generalized and is now adapted to predict a quantitative variable. It consists in �nding an

hyper-plan that divides and classi�es the data at best. The goal is therefore to �nd a kernel
function where the quality of prevision is as best as possible.

Figure 3.3: Example of SVM

When the data is not linearly divisible, it can be possible to �nd a non linear border. The

�rst step of this method consists in transforming the variable into one that can be linearly

divisible.

For when we consider the images of our observations through a non linear application

φ in a space H with a larger dimension than the initial space, with the help from a kernel

function which gives the entry vectors (vector of predictor variables) in a subset where

they are linearly divided. The kernel function can be written:

k(x, x′) = φ(x).φ(x′)

Where k is the kernel function and φ : Rn → H is a function that has as starting space n

predictor variables end for ending space the sub-vector space H where the data is linearly

divisible. One of the main principle of this model is to integrate a complexity control

in the estimation. this means controlling the number of parameters (or support vectors)

associated.

These conditions insure that the symetric function k is a kernel if for all xi possible, the

k(xi, xj) is a positive de�nite matrix. In this case we show that there exists a space H and

a function φ such as k(x, x′) = φ(x).φ(x′).

Commonly used kernels :

– Polynomial kernel : k(x, x′) = (cx.x′)d , c ∈ R,

– Gaussian kernel : k(x, x′) = exp

(
−‖x− x

′‖2

2σ2

)
, σ > 0,

– Hyperbolic kernel : k(x, x′) = tanh(c1x.x
′ + c2) , c1, c2 ∈ R.
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3.1.6 Gradient Boosting Model
In 2002, Friedman suggested a boosting algorithm based on a loss function assumed dif-

ferentiable called Gradient Boosting Model (GBM). The basic principle is to build a sequence

of models in a way that at each step, each model added to the combination seems like a

step to a better solution. The principal innovation of this model is that this step going in

the direction of the gradient of the loss function which is approximated by a regression

tree. The algorithm of this method is as follows :

Algorithm 3 Gradient Boosting Model algorithm

x0 the observation to predict and {(xi, yi)}ni=1 a sample ;

φ(x) a model function of {x1, ..., xp} ∈ Rp
;

Q(y, φ(x)) = exp[−yφ(x)] the loss function ;

M the number of iterations ;

η ∈]0; 1] the shrinkage parameter ;

Initialize φ̂0 = arg min
γ

n∑
i=1

Q(yi, γ).

form = 1 toM do

Calculate rim = −
[
δQ(yi, φ(xi)

δφ(xi)

]
for i = 1, ...n.

Adjsut a regression tree hm(x) to rim giving the terminal leaves, i.e train using the

training set {(xi, rim)}ni=1.

Calculate γm = arg min
γ

n∑
i=1

Q
(
yi, φ̂m−1(xi) + γhm(xi)

)
.

Update : φ̂m(x) = φ̂m−1(x) + η.γm.hm(x).

end
Result: φ̂M(x0).

The algorithm is initialized by a constant, meaning a tree with only one leaf. The term

of the gradient is simply the same as calculating the residuals rmj of the model at the

previous step. the correctional terms γjm are optimized for each tree.

How this model works is that it builds trees one by one and the predictions of each

of the trees are summed, the next decision tree is built to try and cover the discrepancy

between the current prediction and the real value

This kind of method are called boosting unlike the previous method we talk about such

as random forest which are bagging methods. Boosting methods have the same general

principle as bagging method, it is the building of a family of models which will averaged

to get an estimation of the result. The most noteworthy di�erence is on the way to build

the family of models. In the boosting models, the family are created by recurrence where

each model is an adapted version of the previous one and gives more weight at the next
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estimations to the entries that are poorly adjusted or poorly predicted. The perk of boost-

ing models are that they allow us to avoid over-�tting. The boosting methods can reduce

the variance and usually give better results than bagging methods. However only by com-

paring the errors in boosting and bagging method can optimize the choice of a method for

a speci�c dataset. The GBM model can be very e�ective especially when the shrinkage

coe�cient is well adjusted.

3.1.7 Extreme Gradient Boosting
The Extreme Gradient Boosting (XG-Boost) is based on the GBM model. The main di�er-

ence between the two models is that the XG-Boost model has more regulation to control the

over-�tting which usually gives it a better performance than GBM. This method is used for

supervised learning problems, so where we use a training sample with predictor variables

Xi to predict Yi. The tree boosting model is written :

ŷi =
K∑
k=1

fkxi , fk ∈ F

Where F is the ensemble of regression trees possible and K the number of trees. In

order to �nd the best parameters we need to de�ne an objective function which will mea-

sure the performance of the model. The objective function must contain training loss and

regularization. The objective function is :

Obj(θ) =
n∑
i=1

d(yi, ŷi) +
K∑
k=1

β(fk)

Where d is the loss for each value and β(fk) is the regularization associated to each

tree. The loss function measures how predictive the model is. It is commonly the mean

square error. The regularization term is there to control how complex the model is and can

help us prevent over-�tting.

The goal of the machine learning is to �nd out which parameters are needed for the

model by starting from the parameters of the trees. For that we must �nd fk. Since we

cannot �nd all the parameters of the trees at once we will use additive training : from what

we have already learned, add trees to the model one by one, ŷi
(t)

is the predicted value at

the step t where t ∈ [0, K] :

ŷi
(t) =

t∑
k=1

fk(xi) = ŷi
(t−1) + ft(xi)

Since the goal is to minimize the objective function, during each step we will choose

the tree that minimizes the objective function.
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Obj(t) =
n∑
i=1

d(yi, ŷi
(t)) +

t∑
k=1

β(fk)

=
n∑
i=1

d(yi, ŷi
(t−1)) + ft(xi) + β(ft)

In order to optimize it, we �rst need to use a Taylor expansion. The result is :

Obj(t) ≈
n∑
i=1

(
gi.ft(xi) +

1

2
.hi.f

2
t (xi)

)
+ β(ft)

With :

gi = ∂
ŷ
(t−1)
i

d(yi, ŷ
(t−1)
i )

hi = ∂2
ŷ
(t−1)
i

d(yi, ŷ
(t−1)
i )

We must now �nd the regulation factor that will penalize too complex models. ft(xi) =
cq(x), q ∈ RT , q : Rd → {1, 2, · · · , T}. In this algorithm, we penalize linearly the number

of leaves :

β(ft) = γ.T +
1

2
.λ

T∑
j=1

c2j

The parameters λ and γ allow us to adjust the regularization term.

Algorithm 4 XG-Boost algorithm

x0 the observation to predict ;

T the number of iterations ;

Initialization ŷi
(0) = 0.

for t = 1 to T do
Calculate gi = ∂

ŷ
(t−1)
i

d(yi, ŷ
(t−1)
i ) and hi = ∂2

ŷ
(t−1)
i

d(yi, ŷ
(t−1)
i ).

Build a tree ft(x) by starting with an empty tree and for each node �nd the better divi-

sion according to each variable, and add the best of them, if it minimizes the objective

function.

Add ft(x) to the model y
(t)
i = y

(t−1)
i + εft(xi) where ε is the reduction parameter in

the adding of trees in the model.

end
Result: y(T )i .

At each step, the magnitude of the adjustment decreases. The shrinkage factor penalizes

the addition of another model, to slow down learning and avoid over-learning.
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3.2 Performance metrics

3.2.1 Root Mean Squared Error
We will be evaluating our models based on their RootMean Squared Error (RMSE), mean-

ing that in order to determine which model �ts best our data, we will pick the one with the

lowest RMSE. The formula for the RMSE is the following :

RMSE =

√√√√ 1

n

n∑
i=1

(y − ypred)2

3.2.2 Lorenz curve
To compare our models we used the Lorenz curve. In the case of insurance modeling,

it is a graphic that shows, on the x axis the cumulative percentage of population sorted by

predicted pure premium (or the risk) and on the y axis the cumulative percentage of pure
premium.

Let yi be the pure premiums of the individual i = 1, ..., n and ŷi the pure premium

estimations given by the model. To map the Lorenz curve, we �rst sort the n pure premiums

yi by their associated predictions so that :

ŷ1 ≥ ŷ2 ≥ · · · ≥ ŷn

With that ordering (from high risks to low risks, based on our predictions), we plot the

Lorenz curve : 
i

n
,

i∑
k=1

yk

n∑
k=1

yk


We can see an example of the Lorenz curve in �gure 3.4. The x and y axis are graduated

with numbers between 0 and 1 (or 0 to 100%). The curve labeled “perfect pricing” is plot-

ted using the true pure premium values instead of predictions. The curve labeled “average

pricing” represents the lower bound. All the other curves represent the di�erent models.

The curve labeled “model 1” is the best model because it is the closest to the “perfect pric-

ing” curve, so the predictions are better. The curve labeled “model 2” is the worst of the

models because it is closer to the average pricing. In the graph, we can see that with a

certain percentage of population sorted by risk, we can explain a certain percentage of the

pure premium.
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Figure 3.4: Example of a Lorenz curve

3.2.3 Receiver Operating Characteristic curve & Area Under Curve
The Receiver Operating Characteristic curve was �rst used during world War II to detect

signals. We now use the ROC curve to plot true positive rates against false positive rates in

order to determine if a model is a good model. To plot the curve we �rst must know what

true and false positives are as well as true and false negatives.

– “True Positive”, TP : when the observation is 1 and the estimation of the model is 1.

– “False Positive”, FP : when the observation is 0 but the estimation of the model is 1.

– “False Negative”, FN : when the observation is 1 but the estimation of the model is 0.

– “True Negative”, TN : when the observation is 0 and the estimation of the model is 0.

P = TP + FN is the number of positives,

N = TN + FP is the number of negatives.

We call the sensibility : Se =
TP

P
∈ [0, 1]

We call the speci�city : Sp =
TN

N
∈ [0, 1]

We obtain the ROC curve by calculating Se(s) and 1 − Sp(s) for s varying between 0
and 1 where s represents the di�erent cut-o� points. On the x axis is represented the false
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positive rate and the y axis the true positive rate. Each point on the ROC curve curve rep-

resents a sensitivity/speci�city pairing that is associated to a particular decision threshold

(s). The ROC curve curves are insensitive to class imbalance, they can allow us to choose

the best trade-o� between False Positive rate and True positive rate.

The Area Under Curve (AUC) represents the area under the ROC curve, so AUC ∈ [0, 1].
The greater the AUC is, the better the performance of the model. It can allow us to compare

two models with a numeric value. An example of ROC curves representing di�erent models

can be seen in �gure 3.5 with their corresponding AUC.

Figure 3.5: Example of ROC curves
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Chapter 4

Pure premium estimation

One of the main goals of our project is to explain the pure premium. The equation for

pure premium is :

PurePremium = Loss× frequency

We have tried doing this with a few di�erent models in attempt to �nd the model that

is best adapted to our data. Most of the models that we have used, we learned at the EURIA
such as linear regression, regression trees and random forest however the boosting models,

as we did not study them in class, required deeper research to fully grasp.

In this chapter we will see how we �tted each model, and explain if it is or not a good

model to predict the data. To estimate the pure premium we used two di�erent techniques,

the �rst one was to estimate the loss directly and the second one was to estimate the rate,
which is a function of loss (explained in section 4.2). To compare the adequacy of the

models used we will compare their Root Mean Squared Errors, their Lorenz curve and their

ROC curve, the most signi�cant of these results will be represented in section 4.3.

All the simulations of the di�erent model were done through the software R. We decided

to use this software as it is the one that we are most familiar with, and the functionalities

are very developed especially for data science.
To estimate the Pure Premium, we divided the database into two parts, the �rst sample

contained 70% of the database and will be used as the training sample and the other 30%
will be used as the testing sample. We will use the notation RMSEtrain for the RMSE on

the training sample and RMSEtest for the RMSE on the testing sample.

4.1 Loss estimation

In order to calculate the pure premium, we will estimate the loss and then multiply it

by the frequency. Estimating the loss was done without the imputed data. At this stage of

our project the missing values were replaced by “VM” and the lines where the gshap had
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no value were deleted. All the following models to estimate the loss were done with this

modality “VM”.

In order to evaluate well the RMSE it is necessary to have the order of magnitude of

the variable Loss. The basic information of the variable Loss are summarized in the table

below.

min 1st quantile median mean 3rd quantile max

24 51, 010 1.73× 106 10.21× 106 5.314× 106 2.474× 109

4.1.1 Linear regression
To apply the generalized linear model, we need to choose a distribution for the loss.

We choose a normal distribution. We suspect that it will �t better to the logarithm of the

loss because as we have discussed in section 2.2 the Log-Loss looks like a normal distri-

bution. In our model, the variable Y that we are trying to predict is Loss, the predictor

variables that we have selected (to avoid new levels problems) are RoofType, StructureType,
OccupancyType, YearBuilt, InsuredValue, and gshap.

Figure 4.1: Plots of the linear regression

As a result, we get R2
adj = 0.735 that is satisfying for the model knowing that this is a
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�rst non-optimized model where not all of the predictors variables are present. In �gure

4.1 we can see the four di�erent graphs.

The �rst graph (top left) represents the �tted model against the actual model, it shows

us whether the residuals have linear patterns or not. We can notice that the relationship is

not actually linear, there are too many points that are not even close to the �tted line.

The second graph (top right) represents theQQ-plot or quantile plot, it shows us whether

the residuals follow or not a normal distribution. However we can see that the values on

the left of the graph are a little under the dotted line while on the right side of the graph

they are well above the dotted line, it indicates us that the tail is heavier than the one on a

normal distribution, therefore, one of the most important hypothesis of the linear regression
model is not validated.

The third graph (bottom left) is used to check whether the variance of the residuals
depends on the linear relationship so if the residuals are spread equally. However we can

notice that the residuals seem to spread wider after a certain point, we can thus make the

assumption that the variance is not equal, it is heteroscedastic. That contradicts another

important hypothesis of the linear regression model.

The �nal graph (bottom right) is meant to show outliers, as they can be in�uential. The

results can be quite di�erent if we decide to include them or not. This plot is used to watch

out for outlying values. If a value is outside of the Cook’s distance (the red dotted lines) it

means that it cannot be taken out of the model because it is in�uential, this mostly shows

us that we have to be careful in the future models due to this outlier. We can see on our

graph that they are many outliers in our model.

We therefore reject the model because the hypothesis are not satis�ed, but since we

saw that the tail was too heavy on the second graph, we decided to try a model on the

log-loss because, as seen in �gure 2.6 the log loss looks more like a normal distribution.
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Figure 4.2: Plots of the linear regression on the Log-Loss

In �gure 4.2, in the �rst graph we see that the residuals seem linear except for the two

outliers on the right of the graph. On the second graph we see that the tail corresponds

better to a normal distribution than it did in �gure 4.1, however it doesn’t really �t on the

bottom left, the tail is still a bit heavy. In the third graph, it looks pretty constant except for

the same two outliers. Finally in the fourth graph, we see that there is one outlier outside of

the Cook’s distance. In conclusion, with the log-loss the hypothesis seem more satis�ed but

we have a worseR2
adj(0.3794), we still reject it, indeed, because of new levels we could not

better the model by adding the other variables and we cannot calculate the RMSE, which

is principal performance metrics we chose to compare our models.

4.1.2 Regression trees
The next method we tried, to get an estimation of the loss, is regression trees. When we

applied this model to our data, every time we would run the code, the results were di�erent,

the regression tree we got as results would vary and use di�erent parameters. Also one of

the problems with this method was that if one of the predictor variable was too important,

it would use it to split the set at each node.

43



4.1. LOSS ESTIMATION CHAPTER 4. PURE PREMIUM ESTIMATION

As we can see in the following �gure (�gure 4.3) at each node except the last on on the

right, the split is done by InsuredValue, so a lot of other predictor variables are not included

in the result. This �gure represents the tree before pruning.

Figure 4.3: Regression tree for Loss before pruning

To know when it is better to prune the tree we created the graph in �gure 4.4. It plots

the the error of the regression in function of the size of the tree, cp is the set of possible

cost-complexity pruning for a nested sequence. Here we see that the error is smaller when

the tree has a size of four, and the cp is pretty small, it would not decrease much if we

picked �ve. We therefore decided to prune the trees so that it would only have four leaves.

Figure 4.4: Error of the regression tree in function of the tree size
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The �gure 4.5 represents the pruned tree with only four leaves. In this tree the split at

each node only uses the insured value.

Figure 4.5: Pruned regression tree for Loss

The results we obtain with the regression trees are quite bad :

RMSEtrain = 27, 320, 343 ; RMSEtest = 67, 171, 269

They depend too much on the training sample and on the choice of the parameters. The

error might be also due to the too high signi�cance of InsuredValue in the trees.

We speculated that the random forest method would give better results because of the

randomization e�ect. It would bring more diversity in the variables used in the trees and

therefore give a stronger model.

4.1.3 Random Forest
After having adjusted the random forest model to our data, with the default parameters

m = 3 (number of variable randomly sample) and 10 trees we get the following results :

RMSEtrain = 21, 491, 152 ; RMSEtest = 45, 543, 067

As we suspected the results of the random forest are better and more stable than the

ones of the regression tree. Indeed the RMSE are lower, don’t vary as much when we change

the parameters and don’t depend as much on the training and testing sample.
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Figure 4.6: Signi�cance of the variables in the random forest

In �gure 4.6, we can observe the signi�cance of the di�erent variables in the random

forest model. As we can see in this graph, the most relevant variable in explaining the

loss is again InsuredValue, other relevant variables are YearBuilt and the gshap. Some other

variables are relevant but four times less than the InsuredValue.

We can see in �gure 4.7, that errors are very signi�cant for extreme values, we therefore

thought it would be better if we tried to adjust two di�erent model : one for extreme values
and one for average values, we will explain it in the following section.

Figure 4.7: plot of the loss against the error

46



4.1. LOSS ESTIMATION CHAPTER 4. PURE PREMIUM ESTIMATION

4.1.4 Logistic regression coupled with random forest
As we further worked on our project we noticed that maybe the average losses and the

signi�cant losses didn’t follow the same model and that is why our error was always too

signi�cant. We therefore decided to divide the losses in two, we created a new variable.

The very large losses above a speci�c threshold were a�ected the number one while the

smaller or average losses were given the number zero. To choose the value above which an

observation will be considered as extreme or not we use the mean residual life plot, we have

to chose the threshold as big as possible so that the values above will really be extreme,

but not too big to be able to adjust a random forest on the extreme values.

Figure 4.8: Mean residual life plot to �nd the threshold

This graph is based on the stability by censoring of the GPD Generalized Pareto Dis-

tribution (GPD), let X be the random variable that describes loss. We remind that :

X ∼ GPD(σ , κ) ⇔ FX(x, σ, κ) =


1−

(
1 +

κx

σ

)−1/κ
for κ 6= 0,

1− exp
(
−x
σ

)
for κ = 0.

The censoring of the GPD follows the principle : if L(X − u0 | X ≥ u0) ' GPD(σu0 , κ),

Then, for u ≥ u0 : L(X − u | X ≥ u) ' GPD(σu , κ) with σu = σu0 + κ(u− u0).

The empirical mean residual life plot is the plot of:(
u,

1

nu

∑nu

i=1
(x(i) − u)

)
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Wherex(1), . . . , x(nu) are thenu observations that exceed the thresholdu. If the exceedances

of a threshold u0 are GPD, the empirical mean residual life plot should be approximately

linear for u > u0 according to the stability by censoring principle. The con�dence intervals

in the plot are symetric intervals based on the approximate normality of sample means.

In �gure 4.8, we can see that an appropriate threshold to distinguish the extreme values

from the normal values is 3.107
. This threshold holds 120 observations above it.

We then used a logistic regression to make a model to predict whether the value will

be extreme or not. Once the logistic model has been applied to our data, we applied the

random forest model to a data-set with only losses with the number one given by the logistic

regression to give an estimation for the extreme claims. We applied another forest for

when the predicted value given by the logistic regression was zero. It gave us two separate

random forest to predict the values.

One of the major step in logistic regression is to optimize the threshold for the logistic

regression. We can see in the two following �gures the error in function of the threshold

on the training database and on the testing database.

Figure 4.9: Optimization of logistic regression threshold

In �gure 4.1.4, the left graph is the error in function of the threshold in the training

database and on the right it is on the testing database. We can see that the default threshold:

0.5 is the most adapted to our data since it minimizes the error in both graphs. Once this

threshold is chosen we worked the logistic regression and as we can see in �gure 4.10 the

result is very good. The ROC curve for the testing sample is almost perfect and we �nd an

AUC of 0.98.
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Figure 4.10: ROC curve on the testing sample

In �gure 4.11, we can see the signi�cance of the di�erent variables in the random forest
ran on earthquakes that were given the value zero in the logistic regression. As suspected,

the InsuredValue is still the most signi�cant variable in this model, the other signi�cant

variables are OccupancyType, YearBuilt, and NumStories we see here the InsuredValue is at

least still twice as signi�cant as the other variables and OccupancyType which was not very

signi�cant in the normal random forest and is quite signi�cant in this model.

Figure 4.11: Signi�cance of variables for average values
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In �gure 4.12 we can see the signi�cance of the di�erent variables in the random forest
ran on earthquakes with extreme values, so that were given the value one in the logistic
regression. In this second random forest, the InsuredValue is still the most signi�cant vari-

able, the other signi�cant variables are gshap, OccupancyType, YearBuilt, and NumStories.
The InsuredValue here is very signi�cant, almost three times as signi�cant as the other

variables and the gshap is also very signi�cant, that is probably due to the fact they they

are almost directly related to the loss.

Figure 4.12: Signi�cance of variables for extreme values

After working the whole model (with the random forests) we get :

RMSEtrain = 67, 726, 643 ; RMSEtest = 75, 861, 793

The result have decreased in e�ciency in this model, this is due to the fact that if the

logistic regression predicts a normal value to be extreme, it will run the random forest for

extreme values on it and predict a value so much larger for this value that the error just for

this value will be huge. That is why the error is so large in this model.

At this point we realized that estimating the loss might not be the best solution to

estimate the pure premium and that insured value was always too signi�cant, that is why

we decided to estimate the rate.
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4.2 Rate estimation

As we have seen in the previous section, it is hard to estimate the loss. Another problem

with estimating the loss was that to get the pure premium, we would have to estimate

the frequency as well, which would have given worse results. We therefore decided that

estimating pure premium might be a better approach but once again, the relation of pure
premium with insured value was too close, which overshadowed the other variables. In

order to remove the importance of the insured value we decided to modelize the rate :

Rate =
PurePremium

InsuredV alue
, with PurePremium = Loss× Freq

Hence, in this section of our report we will present the models we used to predict the

rate variable, so we decided to reorganize our database by dividing it into two datasets :

– The �rst being PPbystite, this database was meant to be used in the data science

and modelization part of our project. Since the goal is to modelize PurePremium, we

added a column pure premium calculated with loss and frequency, and since loss and

frequency were not useful anymore we deleted them. The variables included in this

database are LocationID, Rate, BLDGCLASS, OCCSCHEME, OCCTYPE, YEARBUILT,

gshap, RoofType, SctureType, OccupancyType, YearBuilt, NumStories, FloorLevel.

– The second database is called ELT, it is the Event Loss Table, the variables it con-

tains are : EventID, Loss, Freq. This database will be used later in the project in the

reinsurance section.

Since the rate variable is very small, it is hard to interpret well the RMSE of rate, we

therefore decided that once we estimated the rate, we multiplied them by the insured value
in order to get the pure premium and we compared the RMSE based on the pure premium.

In order to evaluate well the RMSE it is necessary to have the order of magnitude of the

variable pure premium. The basic information of pure premium are summarized in the table

below.

min 1st quantile median mean 3erd quantile max standard deviation

0 19 106.2 966.1 408.8 323, 369.2 7, 778

In this section, we had deleted the observations without InsuredValue and performed

the imputation of the data with theMICEmethod. We did not delete gshap this time because

the MICE method predicted it well, thus the models presented next are done on a database

with no missing values and on the entire data (except for the few insured value missing

that we deleted). We also changed the way we processed the data by using the R package

data table.
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4.2.1 Random forest
As the regression trees did not give us such good in the estimation of the loss, we decided

to start the rate estimation directly with a random forest. The parameters we choose for

this random forest are two as the number of predictor variables randomly sampled (default

parameter) and 10 trees.

Figure 4.13: Signi�cance of the variables in the random forest

In �gure 4.13 we can observe the signi�cance of the di�erent variables in the random
forest model. As we can see in this graph, the most relevant variable in explaining the rate
is gshap which is logical as it is an indicator of seismic activity and we are modeling pure

premium for an earthquakes portfolio. All the other variables are relevant in estimating the

rate however much less than the gshap. We can see that all the variable have signi�cance

in this model which was not the case in the estimation of the loss by random forest.

Figure 4.14: Plot of PurePremium against the error on the training sample
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We can see in �gure 4.14, the green area represents the values where the error is less or

equal to 20% of the pure premium and the red area represents the values where the error is

above 20% but less than 50% of the pure premium. We created these colored areas because

we can’t compare an error of 10 on a pure premium of 100 to an error of 10 on a pure
premium of 100, 000.

Figure 4.14 represents the pure premium against the error on the training sample. We

can see in that except for a few values on the right of the graphs, the values are all in the

limit of the 50% of the pure premium. We can also observe that it predicted well the largest

value of the pure premium.

Figure 4.15: Plot of the PurePremium against the error on the testing sample

We can see in �gure 4.14 that the smaller values have errors that are not too large but

in contrary to the training sample the extreme value, in this sample the error is much more

signi�cant, it is here around 40% larger than the predicted value. As a result, the random
forest gives us the following root mean square errors :

RMSEtrain = 3, 216 ; RMSEtest = 4, 256

They do not seem that large, however they are around four times larger that the mean

of the pure premium. This is due to the very large standard deviation of the pure premium,

indeed as we can see on �gures 4.14 and 4.15, the extreme values impact largely the RMSE.

We can also see that it is a situation of over-�tting as the RMSE of the testing sample is 25%
larger than the one of the learning sample, to remedy this, we will see in section 4.2.6.1 an

hyper-parametrization of this model.

In �gure 4.16 we can see that the Lorenz curve for the random forest model is pretty

close to the perfect model and the shape similar, that means this estimation model gives a

pricing very close to what it should be. In the perfect model the premium of the 20% riskier
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policies represent 88% of the cost, in our model they represent 82% of the cost. However

the RMSE as we have mentioned before is still quite large.

Figure 4.16: Lorenz curve for Random Forest

4.2.2 Generalized Linear Model
For the generalized linear model we had to choose a distribution for the family parame-

ter. We can see in 4.17, the histogram is the distribution of the rate variable and the red line

represents the �ted gamma distribution. We can clearly see that the rate follows a gamma
distribution, therefore we decided to apply a gamma distribution to our GLM to estimate

the rate. We used the h2o package with the the function h2o.glm to modelize the rate.

Figure 4.17: Histogram of the rate
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The default link function in R for the gamma family is g(x) = 1/x. In actuarial sciences

the pricing function usually used is g(x) = log(x). We tried both, but �nally chose the R
default function because the results were better. Thus GLM present below is done by using

the function : g(x) = 1/x.

Because of the previous graph, we thought that model would �t well, however as we

can see in �gure 4.18 the error is above 20% for almost all the point and above 50% for a lot

of the points on the training sample. This might be due the fact that it is not well �tted for

the extreme values and the very small values, which composes the majority of our dataset.

Figure 4.18: Plot of the Pure Premium against the error on the training sample

Since the errors were very large in the training sample, it is not surprising that they are

also very large in the testing sample. As we can see in �gure 4.19 most of the values have

at least a 20% error and a lot of large values are outside of the red area, so have more than

a 50% error in estimation.

Figure 4.19: Plot of the Pure Premium against the error on the testing sample
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The root mean square errors we calculated for the gamma GLM are:

RMSEtrain = 5, 067 ; RMSEtest = 5, 404

The Lorenz curve in �gure 4.28 seems close to the perfect model and the shape looks

similar, however it is not as good as the Lorenz curve in the random forest (�gure 4.16) :

the area under the curve is of 0.892 for this model while in the random forest model it was

0.901. The RMSE for this model are not very good in comparison to the random forest.

Figure 4.20: Lorenz curve for GLM

We could have improved this model by doing some variable selection, but the main

problem with this model is that it doesn’t deal with new levels in predictions, it would

therefore be too complicated to improve, and compare to the other models. For exemple,

to calculate the RMSE above, we �rst had to �x the testing and training sample in order to

get rid of the new levels.

4.2.3 Gradient Boosting Model
We �rst ran a Gradient Boosting Model with 300 trees and a shrinkage coe�cient of 0.6.

The root mean square errors we calculated for this model are :

RMSEtrain = 4, 098 ; RMSEtest = 4, 426

Figure 4.21 shows the reduction of squared error for each variable, this means that it

plots the reduction in the squared error when we add a new variable to the model. We see
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that the gshap has a signi�cant relative in�uence in this model followed by OccupancyType
and NumStories which still have signi�cance but three times less than the gshap. The other

variables have much less signi�cance.

Figure 4.21: Relative in�uence of variables in GBM

Figure 4.22 plots the importance of each modality of a variable in the model. So for

example in the gshap graph, the values from 4 to 4.5 and the values from 5 to 5.5 are the

values of the gshap which helps the most the estimation of the rate, and in the RoofType
variable, the �at roof is more useful in the prediction than the tiled roof which makes sense

because the �at roofs usually entitle a higher premium. For the variable NumStories, we

can see that its usefulness in the prediction increases with the number of stories.

Figure 4.22: Marginal plots of GBM

As an output of this �rst model, we produce the graph in �gure 4.23. This graph shows

us for which number of trees the error will be minimized. We can see that after a certain
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threshold the error on the training sample (black line) decreases while the error on the

testing sample (green line) increases. Therefore we choose thenumber of iterations (i.e the

number of trees) to be 76 ( blue dotted line) otherwise it creates over-�tting.

Figure 4.23: Plot of the GBM performance against the number of iterations

We ran a new model with the number of trees changed to 76 and the RMSE has wors-

ened for the training sample, but it has improved for the testing sample :

RMSEtrain = 4, 321 ; RMSEtest = 4, 351

Figure 4.24 shows the reduction of squared error for each variable in the adjusted model

with only 76 trees instead of 300. We see that the gshap still has the most signi�cant

in�uence in this model, once again followed by the occupancy type however this times

OccupancyType has six times less signi�cance than gshap. The other variables have much

less signi�cance.

Figure 4.24: Relative in�uence of variables in GBM

In �gure 4.25, we see the importance of each modality of a variable in the model. The

gshap graph shows about the same result as in �gure 4.22 so that gshap around 4 and 5 are
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the values of the gshap which help the most the estimation of the rate. However in this

case both modalities of the RoofType variable have the same importance in the prediction.

For the variable YearBuilt, we can see that its usefulness in the prediction is larger when

its value is 1, 970 and lower at values around 2, 000.

Figure 4.25: Marginal plots of GBM
In �gure 4.26, the error seem almost always within the 50% area and is very close to

zero for the largest value on the training sample which is quite good. For the average values

(around 2, 500) the values are usually well predicted, it is mostly for the very small values

that the error is relatively larger.

Figure 4.26: Plot of PurePremium against the error on the training sample

We see in �gure 4.27, that the error is larger than in the training sample, for example

the error for the largest value is around 25% of the pure premium while it is lower than 5%
in the training sample. However the error di�erence between the two samples seem pretty

small.
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Figure 4.27: Plot of PurePremium against the error on the testing sample

In the following Lorenz curve, the curve labeled GBM1 represents the model with 300
trees and the model labeledGBM2 represents the model with 76 trees (both with a shrinkage
coe�cient of 0.6). We can see that both of the curves have the right shape, the same as the

perfect model. However we see that the second model gives a �ner estimation. That can

also be seen in the RMSE, for the testing sample, the second model has a lower error.

Figure 4.28: Lorenz curve for GBM
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We can see that the model with only 76 trees instead of 300 incurs a smaller RMSE, we

can adjust this model even more by hyper-parametrization. We will see in section 4.2.6.2,

that the results of the hyper-parametrization are :

RMSEtrain = 3, 502 ; RMSEtest = 4, 681

We have succeeded in decreasing the RMSE for the training sample, but it has increased

largely for the testing sample. Therefore we decided to try the XG-Boost method as it uses

a more regularized model formalization to control over-�tting, which gives better perfor-

mances.

4.2.4 Extreme Gradient Boosting
It was impossible to use XG-Boost to estimate the rate as the values were too small, so

we estimated rate × 106
. We had to set some parameters in order to work the XG-Boost

model. We chose the default parameters: the maximum depth is six, the shrinkage coe�-

cient is 0.3 and the minimum number of observation per leaf is one. The only parameter

we had to set ourselves was the number of iterations which we set at 200.

Figure 4.29 represents in the �rst graph the number of leafs that exist at each depth so

for example, there is about 500 leafs at the depth six. We can clearly see that the largest

number of leafs are at depth seven, at that depth, there are about 2200 leafs.

The �rst graph is supposed to help us �nd out which maximum depth is acceptable. So

if the higher depth had barely any leaf it would mean that we over-�tted the model, we

can see here that there is quite a number of leaf here, so we decided not to change this

parameter.

The second graph plots the average number of observation per leaf at each depth, for

example at depth �ve there are an average of two observations per leaf and at depth seven

there is an average of 70 observations per leaf.

This graph can be useful to �gure out the min child, which is the minimum number of

observations that the leafs can contain. If there were very few values in the higher depth,

it would once again show that the model is over-�tted, however it is not the case here, so

we do not need to change the minimum child parameter.
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Figure 4.29: Depth of a leaf against the number of leafs and the number of observations

In �gure 4.30, we can see the signi�cance of each variable in the model, we see that

once again gshap is the most signi�cant variable in the predictions. The clusters represent

variables that have the same range of signi�cance, so YearBuilt, NumStories and Occupan-

cyType have the same range of signi�cance in estimating the rate.
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Figure 4.30: Signi�cance of variables in XG-Boost

In �gure 4.31, there is the example of one iteration in the XG-Boost model which gives

a simple regression tree. The parameters are therefore one iteration with depth four. We

can clearly see that gshap is the most used variable to split the data.

Figure 4.31: plot of one iteration in XG-Boost
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In �gure 4.32, there is the example of ten iteration in the XG-Boost model with depth

four. This graph is just to show that this model is very complex and di�cult to interpret.

In the �nal model (section 4.2.6.3) there are 80 iterations with a maximum depth of 7.

Figure 4.32: plot of 10 iterations in XG-Boost

We can see in �gure 4.33 that the errors on the training sample are very small, except

for a few small values they are all within the 20% error area. We can therefore expect a

small RMSE.
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Figure 4.33: Plot of PurePremium against the error on the training sample

We see in �gure 4.34 that the error is much larger than in the training sample, in this

sample most of the values are out of the 50% boundary in contrary to the training sample.
We therefore suspect a much larger RMSE for the testing sample.

Figure 4.34: Plot of PurePremium against the error on the testing sample

In the following Lorenz curve, we see that once again the Lorenz curve for the model is

close to the perfect pricing and has the same shape, however it seems that the area under

the curve is a bit smaller than in some previous models.
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Figure 4.35: Lorenz curve for XG-Boost

For the XG-Boost model, we get the following RMSE:

RMSEtrain = 336 ; RMSEtest = 4, 046

We expected this over �tting, indeed, control over-�tting is the most di�cult and crucial

step of the XG-Boost model. To improve this, we will try to do a hyper-parametrization on

this model in section 4.2.6.3, indeed the shrinkage coe�cient is here of 0.3, so by decreasing

it we can �nd a �ner estimation.

4.2.5 Support Vector Machine
After having tried bagging methods and boosting methods, we decided to try another

type of method: Support Vector Machine. We chose the radial kernel which is the same as

the Gaussian kernel, which we discussed in section 3.1.5.

In �gure 4.36, the errors almost always seem outside the 20% area except for �ve values

and there are also quite a bit that are as well out of the 50% area. We can therefore see

that the predictions on the training sample are quite bad. However the largest value has an

error of only 25% which is not that poor as a prediction of an extreme value.
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Figure 4.36: Plot of PurePremium against the error on the training sample

We see in �gure 4.37 that the error is larger than in the training sample, for example the

error for the largest value is at least 60% of the pure premium. There are very few values

in the green area and a lot of small values outside have errors larger than 50% of the pure
premium.

Figure 4.37: Plot of PurePremium against the error on the testing sample

For the SVM model, we get the following RMSE:

RMSEtrain = 4, 311 ; RMSEtest = 5, 697

In the following Lorenz curve (�gure 4.38), the SVM model has the same shape as the

perfect pricing and is pretty close to it however in previous models we have seen smaller

areas under the curve (such as in the GBM model). The RMSE are not very good for this
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model, and it is much larger in the testing sample than in the training sample. We will try

to minimize this error by hyper-parametrization for this model in the next section.

Figure 4.38: Lorenz curve for SVM

4.2.6 Hyper Parametrization

4.2.6.1 Random Forest

We applied the random forest algorithm to estimate the rate, however our main goal was

to try to �nd the best forest : the one with the most e�cient parameters. The parameters

we need to vary and the intervals we make them vary on are :

– The number of predictor variables in the data : [1 ; 7],
– The number of trees in the forest : [5 ; 600],
– The number of predictor variables randomly : [1; 7].

We have thought about three solutions : minimize the RMSE on the learning base, or

on the training base, or the sum of both RMSE.

To do so, we have made a program that creates a new data base with only n predictors of

the 8 by iteration. It adjusts a random forest, looks for which predictor has less importance

in the forest and deletes it, and continues until we have the number of predictors we want.

Once this data table is created, we vary the number of trees, and the number of variable

randomly sample, we do this for n = 1, ..., 8.
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After trying out di�erent parameters of the forest on the learning database, we found

that the adapted parameters were seven predictor variables in the data, two variable ran-

domly sampled and 255 trees. We can see the following results in �gure 4.39. In this graph:

“var” is the number of predictor variables in the data, “varforet” is the number of variables

randomly sampled for the forest, “abres” is the number of trees in the forest and “errap” is

the error for the training sample.

Figure 4.39: RMSEtrain in function of the parameters

The parameters we found for the best forest for the testing database are seven predictor

variables in the data base (RoofType has been deleted) with two randomly sampled and 145
trees. We can see in �gure 4.40 the error with these parameters.

Figure 4.40: RMSEtest in function of the parameters
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Finally we tried for the sum of the two RMSE. We found that it was seven predictor

variables in the data, three variable randomly sampled and 125 trees.

Figure 4.41: RMSEtest +RMSEtrain in function of the parameters

Considering the over-�tting situation, we decided to minimize the RMSE on the testing

data base. We therefore decided to keep as parameters : seven predictor variable from the

data, two randomly sampled and 145 trees.

In �gure 4.42, we can see the absolute value of the error in the random forest model

on the training sample, the red points represent the optimized model, the one with hyper-

parametrization, and the line is the �tted linear model. The blue points represents the

default model, the one presented in the previous section and the line is the �tted linear

model. So on the training sample the default model gave better predictions.

Figure 4.42: Default vs optimized forest on the training sample
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In �gure 4.43, we can see we can see the absolute value of the error is much smaller for

the optimized model than for the default model, we can therefore admit that the optimiza-

tion of the random forest gave use better predictions.

Figure 4.43: Default vs optimized forest on the testing sample

Here are the RMSE on the training and testing sample for the default random forest and

the optimized random forest:

RMSEdef
train = 3, 216 ; RMSEdef

test = 4, 256

RMSEopti
train = 3, 520 ; RMSEopti

test = 4, 212

In �gure 4.44 we can see the Lorenz curves for the default and optimized random forest
model. The curve for the optimized model is a little below the curve for the default model.

We have seen before that the estimations are better on the testing database for the opti-

mized random forest, so even if the estimations are a little better in the optimized model,

the pricing corresponds maybe a little less to the risk pro�le in the optimized random forest.
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Figure 4.44: Lorenz curve for the random forest model

We have seen that the RMSE on the testing sample is smaller for this optimized random
forest but the di�erence is very small (only reduced by 44), also the Lorenz curve is not as

good and the RMSE on the training sample has increased thus we can conclude that this

optimization was not very useful. We therefore reject this model and keep the previous

default model.

4.2.6.2 Gradient Boosting Model

To optimize the Gradient Boosting Model we decide to try a new method, which is not

fundamentally di�erent from the previous method. We used the caret package . The prin-

ciple is the same, choose intervals for some of the parameters and make them vary.

The di�erence is that we don’t have to make loops, indeed the caret function takes as

entry a metric error (RMSE in our case), the grid of the parameters intervals and the model.

Then it calculates each one of the metric errors and returns the parameters that minimizes

that error. The parameters we need to vary and the intervals we make them vary on are :

– The maximum depth of variable interactions [1 ; 500],
– The shrinkage coe�cient {0.2 ; 0.1 ; 0.01 ; 0.001},
– The number of trees [0 ; 2, 500].

The parameters that we found that optimized this model are 750 trees, 3 for the maxi-

mum depth of variable interactions, and a shrinkage coe�cient of 0.1.
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In �gure 4.45, we can see the error in the GBM model on the training sample for the

optimized model is above the default model, therefore for this sample the predictions are

better for the default model. This is due to a correction of the over-�tting on the training

sample.

Figure 4.45: Default vs optimized GBM on the training sample

In �gure 4.46, we can see the error in the GBM model on the training sample for the

optimized is lower than for the default model, therefore the predictions are better in the

optimized model. This is due to the hyper-parametrization done for the optimized model.

Figure 4.46: Default vs optimized GBM on the testing sample
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The RMSE we obtain for the GBM models are:

RMSEdef
train = 3, 502 ; RMSEdef

test = 4, 681

RMSEopti
train = 4, 034. ; RMSEopti

test = 4, 350

In �gure 4.47 we can see the Lorenz curves for the default and optimized GBM model.
The curve for the optimized model is a little between the default1 and default2 curves. So

the default two model, the one with 76 trees, has a better pricing of the risk pro�le than

the optimized model, however the di�erence is small. The RMSE has decreased from the

default to the optimized model for the testing database so the predictions are better and it

has increased in the training sample to correct the over-�tting.

Figure 4.47: Lorenz curve for the GBM model

Since there is few di�erences in the two models, but we still have decreased the RMSE
by more than 300 on the testing database and have corrected the over-�tting on the training
database will keep the optimized model.
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4.2.6.3 Extreme Gradient Boosting

XG-Boost is a very complexe model, that need to be correctly tuned to avoid over-�tting.

This model has plenty of parameters, but we decided to focus on three of them, which have

a bigger impact on the model. The parameters we need to vary and the intervals we make

them vary on are :

– The maximum number of iterations [1 ; 500],
– The shrinkage coe�cient [0.1 ; 0.9],
– The maximal depth of the trees [1 ; 60].

For this model, we did not use the caret package, because XG-Boost was already too

complex, we therefore decided to do the optimization “manually” using loops. Once again,

considering the over-�tting situation we chose to minimize RMSEtest.

The parameters that we found that optimized this model are 80 iterations with a max-

imum depth of seven and a shrinkage coe�cient of 0.1.

In �gure 4.48, we can see the absolute value of the error in the XG-Boost model on

the training sample, we can see that the default model incurred smaller errors than the

optimized model. So there is a decrease in the e�ciency of the predictions in the training
sample, this can be explained as the decrease of the over-�tting.

Figure 4.48: Default vs optimized XG-Boost on the training sample

In �gure 4.49, we can see we can see the absolute value of the error is much smaller for

the optimized model than for the default model, we can therefore see that the optimization

of the XG-Boost gave us better predictions.
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Figure 4.49: Default vs optimized XG-Boost on the testing sample

The RMSE for the XG-Boost model are the following:

RMSEdef
train = 336 ; RMSEdef

test = 4, 046

RMSEopti
train = 2, 304 ; RMSEopti

test = 3, 672

In �gure 4.50 we can see the Lorenz curves for the default and optimized XG-Boost
model. The curve for the optimized model is exactly at the same place than the the default

Lorenz curves.

In terms of pricing the default model corresponds to the same price pro�le as the opti-

mized model, so to determine which model is better, we can only compare the RMSE. We

see that the RMSE on the training sample has increased but this is explained by a decrease

in over �tting and the RMSE on the testing sample has decreased, which shows that the

predictions are better.
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Figure 4.50: Lorenz curve for the XG-Boost model

We can therefore conclude that the optimized XG-Boost model gives better prediction

than the default one, it is thus the model we will keep to compare to the others in section

4.3. Nonetheless there is still over-�tting, but as we said in the begin of this section, XG-
Boost is very complex with lots of parameters. We could have done a second optimization

using these parameters (for example the minimum loss reduction required to make a further

partition on a leaf node of the tree, or the minimum sum of instance weight needed in a

child).

4.2.7 Support Vector Machine
For the hyper-parametrization of the SVM model we decided, as seen in the section

4.2.6.2, to use the caret package. The parameters we need to vary and the intervals we

make them vary on are :

– The cost of constraints violation [5 ; 500],
– The epsilon in the loss function [0 ; 1].

The parameters that we found are : 0.5 for epsilon and 16 for the cost. In �gure 4.51, we

can see the absolute value of the error in the SVM model on the training sample, the opti-

mized model has a smaller error than the default model, there is a increase in the e�ciency

of the predictions in the training sample.
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Figure 4.51: Default vs optimized SVM on the training sample

In �gure 4.52, we can see we can see that the absolute value of the error is about the

same for the optimized model than for the default model. It is hared to tell which has the

smaller error, it seems the optimized model error might be a little smaller on the testing
sample

Figure 4.52: Default vs optimized SVM on the testing sample

The RMSE we obtain for the SVM model are the following:

RMSEdef
train = 4, 311 ; RMSEdef

test = 5, 697

RMSEopti
train = 5, 130 ; RMSEopti

test = 4, 305

In �gure 4.53 we can see the Lorenz curves for the default and optimized SVM model.

The curve for the optimized model is a little bit higher than the default one, so the predic-

tions correspond to the right risk pro�le.
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We see that the RMSE for the testing database is smaller on the optimized model than on

the default model, however it is smaller on the testing sample than on the training sample
for the optimized model. This is unusual, this might be explain by the fact that to �nd

the optimized model, R tests a lot of possibilities and we asked that it only minimizes the

testing RMSE but we didn’t state anything for the training RMSE.

Figure 4.53: Lorenz curve for the SVM model

As we have mentioned before, the RMSE is smaller for the default model on the training
sample but it is smaller for the optimized model on the testing sample. We therefore decided

to keep the model which minimizes the sum of the RMSE. Thus, we decided to keep the

optimized model.
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4.3 Results summary

In table 4.1, we can see the result that each model gave, in order to compare them

properly. In this table we can �nd for all the models that predict the rate : the root mean
square error for the training sample and the testing sample, if the model can handle missing

data, if there is a possibility ofover-�tting, and the complexity of the model.

Model RMSEtrain RMSEtest NAs Over-�tting Complexity

XG-Boost 2, 304 3, 672 + - - - -

Random forest 3, 216 4, 256 + + -

GBM 4, 034 4, 350 - - -

GLM 5, 067 5, 404 - + + +

SVM 5, 130 4, 305 - + -

Table 4.1: Summary of the modelization results

NB : in the table above, we put “-” for GBM in NAs section because in theory it can deal
with missing values, but the model implemented in R doesn’t. In fact, it is one of the main
objective of XG-Boost, which deals with functions who use the R objects of class “sparse matrix”
so the model can handles missing values.

In the NAs column, the “-” means that model is not built to deals with NAs and the “+”

means it can run with NAs. In the over-�tting column, the “- -” means that the model often

over-�ts, the “-” sign means that it has a tendency to over �t and the “+” means it seldom

over-�ts. In the complexity column, “- -” means that the model is complex in building and

“++” means that it is easy to build.

We can see the di�erent Lorenz curves of all the models that we accepted in �gure 4.54

on the next page. We see that the random forest model gives us the best Lorenz curve,
however all the models have the right shape and they are all very close together.

In table 4.1 we see all the root mean squared errors of the accepted models and we clearly

see that the XG-Boost model has a lower RMSE on the training sample as well as the testing
sample. The perks of the XG-Boost model is that there are a lot of parameters, thus there

are a lot of settings that we can vary and since we still have some over-�tting there is still

room to improve this model. In conclusion this model has the best results and still has a

lot of potential for improvement, it is therefore the model that is the best for our data.
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Figure 4.54: Lorenz curves
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Chapter 5

Reinsurance treaties comparison

One of the main goals of our project is to succeed in applying reinsurance programs

to our portfolio. In order to compare the reinsurance program we created an R-Shiny ap-

plication. It can be found at this address: https://gauthiereldin.shinyapps.io/beshiny/ . The

reinsurance treaties we choose to compare are Excess of Loss and Stop-Loss (Non Propor-

tional Reinsurance : see section 1.5.2.2) . We decided on these options because they are the

most suited to reinsurance for natural disasters.

5.1 R-Shiny application

This application was made by creating a year loss table using the event loss table :

1. Let ei, i = 1...I be the i event of the event loss table,
2. We simulated Xi ∼

iid
U([0 ; 1]) for i = 1, ..., I ,

3. If Xi ≤ freq(ei), we consider that the event ei happened.

In this application, we can select :

– The number n of years that we wish to simulate,

– The treaty type : Excess of Loss, Stop-Loss, both, or none,

– For all the treaties selected we can chose their characteristics (see section 1.5.2.2).

After entering these parameters a graph will show the portion of the claims that are

losses and the portion that is ceded to the reinsurer. In output section of the application,

we will have :

– The number of claims in the n years,

– The total loss per year,

– The amount that is ceded to the reinsurer per year for the speci�c reinsurance treaty,

it is calculated by taking the amount that exceeds the priority line in a Stop-Loss treaty

and the amount that is between the priority and the line in the Excess of Loss treaty

– The net loss per year, it is the loss that is not reinsured,
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– The observed pure premium of event loss table for the Stop-Loss or Excess of Loss,
– The technical premium which is calculated with the following formula :

TechnicalPremium =
PurePremium+ β

√
var(TreatyResult)

1− α
Whereα is the expense factor, β is the risk loading factor and where the event follows

a binomial distribution, thus :

TreatyResult = Loss× (1− Freq)× Freq
The parameters α and β depend on the line of business. In the natural catastrophes
line of business α ∈ [0.10 ; 0.15] and β ∈ [0.10 ; 0.15], we decided to set α = β = 0.1.

5.2 Example

5.2.1 Excess of Loss

Figure 5.1: Excess of Loss reinsurance treaty

In �gure 5.1 there is an example of an Excess of Loss (XS) treaty simulated over 1, 500
years where the priority is of $20 million and the line is of $50 million. We can see that the

number of claims in 1, 500 years is 7, 973. The total loss per year is around $4.4 million, the

amount the reinsurer will have to pay of this loss per year with this Excess of Loss treaty is

around $787, 889.
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The pure premium incurred for this treaty is around $900, 932 per year, it is the loss

multiplied by the frequency. The technical premium takes into account the management

expense as well as a risk margin, in this simulated scenario it is of about $1.3 million. We

can see in this simulation that technical premium is above the ceded loss, which would

mean that the reinsurer is not loosing money. Moreover, this technical premium does not

include the commercial margin, so this means that the reinsurer should be making some

pro�t from this.

5.2.2 Stop Loss

Figure 5.2: Stop-Loss reinsurance treaty

We can see in �gure 5.2 an example of a Stop-Loss (SL) treaty simulated over 1, 500
years where the line is of $80 million. We can see that the number of claims in 1500 years

is 8, 154. The total loss per year is around $4.69 million, the amount the reinsurer will have

to pay with this Stop-Loss treaty per year is of $240, 761.

The pure premium incurred for this treaty is around $324, 438 per year. The techni-

cal premium is of $361, 278 in this scenario. We can see in this simulation that technical
premium is above the ceded loss, that would mean that the reinsurer is at least breaking

even.
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5.2.3 Stop Loss combined with Excess of Loss

Figure 5.3: Excess of Loss combined with Stop-Loss reinsurance treaty

We can see in �gure 5.3 an example of a Stop-Loss treaty combined with an Excess of
Loss treaty simulated over 1, 500 years where the priority of the XS is $20 million and the

line of the XS is $50 million while the line of the SL is of $100 million. The number of claims

in 1, 500 years is 8, 033. The total loss per year is around $5.25 million, the amount the

reinsurer will have to pay per year is $1, 078, 609 for the Excess of Loss treaty and $191, 687
for the Stop-Loss treaty.

The pure premium for the XS treaty is around $900, 932 per year while it is $203, 489
million per year for the SL treaty. The technical premium is of $1, 294, 070 for the Excess
of Loss treaty and $226, 682 for the Stop-Loss treaty in this scenario. We can see that the

pure premium the XS treaty is smaller than the loss incurred for the reinsurer. This could

be bad for the reinsurer which explains why the technical premium takes into account a

risk margin: to make sure they break even. Here we can see that the technical premium is

higher than the loss so the reinsurer still breaks even.
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Conclusion

As the production cycle of the insurer is reversed, it is critical to have well priced prod-

ucts. These estimations must be very precise to make sure that the insurer as well as the

reinsurer stay viable. If it is not they could go bankrupt, the goal is therefore to have a

good equilibrium between the premiums and the losses.

The main aim of this project was to estimate the pure premium for a portfolio of earth-
quakes with the help of di�erent computing tools. We found out that the models that were

adapted the best to our data was the XG-Boost model. It was the model that gave us the

lowest root means square error on the training sample as well as on the testing sample. More-

over the Lorenz curve for this model was quite good. We also chose this model because it

has a great potential for improvement since there are a lot of parameters that we can vary.

An extension of this project could be to vary more of the parameters of XG-Boost to �nd

an even better model for predicting the pure premium.

A secondary goal of our project was to compare reinsurance programs. We decided on

an application that could show the di�erent lines and priority of two di�erent reinsurance
treaties to see the cost and the premium it would incur for the reinsurer. A furthering of

this objective could be to decide on a reinsurance treaty either Excess of Loss or Stop Loss
and determine the appropriate priority and line that would work well for the reinsurer.

We have seen through this project : data science techniques and modelization as well as

premium pricing tools that will be necessary for when we become actuaries. It also allowed

us to apply a lot of the theory that we have learned over the past two years at the EURIA
as wells as learned some new theory. We have also developed our programming skills, by

learning to code new models such as XG-Boost, and how to optimize it, but also by using

new R packages for data treatments (data.table, MICE), or data vizulation (ggplot2). This

Bureau d’Etude consisted for us of a very rewarding �rst professional experience.
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# Lorenz curve 
LorenzCurve <- function(cost,premium)
{

x = (0:100) / 100
plot(x,x, type = "l", main = "Lorenz Curve", xlab = "Premium rank", ylab = "Cost")
l = NULL
area = NULL
require(data.table)
premium = as.data.table(premium)
color=c("#2ECCFA","#2EFE64","#CC2EFA","#FACC2E","#FE2E2E","#585858")
for(i in 1:ncol(premium))
{

ordercost = cost[order(premium[[i]],decreasing = T)]
cumcost = cumsum(ordercost)/sum(ordercost)
lines(x, c(0,quantile(cumcost, 1:100/100)), col = color[i], lwd = 2)
area = c(area,mean(cumcost))
grid(lwd = 2)

}
legend(x = 0.66,y = 0.60,legend = paste0(colnames(premium), ' : ', round(area,3)),

col = color,lty = c(1,1), lwd = 2)
}

# NA check 
checkNAplot <- function(x) {

vars <- ""
perc <- 0
type <- ""
for (i in 1:ncol(x)) {

if (anyNA(x[, i])) {
vars <- c(vars, names(x)[i])
type <- c(type, "Missing values")
perc <- c(perc, length(which(is.na(x[, i]))) / (nrow(x)))

}
}
if (length(vars) > 1) {

vars <- vars[-1]
type <- type[-1]
perc <- perc[-1]
vars <- factor(vars)
naData <-

data.frame(variables = vars,

")

type = type,
percentage = perc)

naData$variables <-
factor(naData$variables, levels = naData$variables[order(naData$perc)])

plot <-
ggplot(naData, aes(x = variables, y = percentage)) + geom_bar(stat = "identity

+ xlab("Variable") + ylab("Percent missing") + ggtitle("Percentage of missing va
lues")

+ coord_flip()
print("Checking NA process completed.")
return(plot)

}
else

print("No NA")
}

1 Functions



2 Preparation of the work environment
Loading of the packages, initialization of the h2o environnement

rm(list = ls())
gc()

remove.packages(pkgs='data.table')
setwd(paste(getwd(), '/1.Data', sep = ''))

load.libraries <-
c('lazyeval' , 'ggplot2', 'h2o' ,'rpart', 'rpart.plot' , 'mice' , 'readr' ,

,

'randomForest' , 'hydroGOF' , 'gbm' , 'xgboost' , 'plotly' , 'MASS' , 'e1071' ,
'corrplot','ipred','caret', 'Metrics','data.table','stringr','evd','nnet','ROCR'

'leaps','VIM','pacman','mice','lattice','DiagrammeR','Ckmeans.1d.dp','plyr')

install.lib <- load.libraries[!load.libraries %in% installed.packages()]
for (libs in install.lib) {

install.packages(libs) 
}
s

apply(load.libraries, require, character = TRUE)
rm(libs, install.lib, load.libraries)

h2o.init()
h2o.removeAll()

3 Data vizualisation

A = dat # /!\ TO RUN THIS YOU NEED TO RUN 4.1 BEFORE
B = LossByLoc # /!\ TO RUN THIS YOU NEED TO RUN 5.1 BEFORE

ggplot(B, aes(x = Loss)) + geom_histogram(bins = 80) +
labs(x = "Loss", y = "Frequency")

ggplot(B, aes(x = log(Loss))) + geom_histogram(binwidth = 0.1) +labs(x = "Log-loss", y = "Frequency")

ggplot(A, aes(x = OccupancyType)) + geom_bar() + theme(axis.text.x = element_text(
angle = 90,
hjust = 1,
vjust = 0.5,
size = 6

)) +
labs(x = "Occupancy Type", y = "Frequency")

ggplot(A, aes(x = RoofType)) + geom_bar() +
labs(x = "Roof Type", y = "Frequency")

ggplot(A, aes(x = YearBuilt)) + geom_bar() +
labs(x = "Year Built", y = "Frequency")

ggplot(A, aes(x = NumStories)) + geom_bar() +
labs(x = "Number of Stories", y = "Frequency") + scale_x_discrete(limits =

c("1", "2", "3
", "4", "5", "6", "7", "8", "9", "10", "15", NA))

ggplot(A, aes(x = FloorLevel)) + geom_bar() +
labs(x = "Floor Level", y = "Frequency") + scale_x_discrete(limits = c("-1", "1", 

"2", "3", "4", "5", "6", "7", "8", "9", "15", NA))

names(table(A$StructureType))
A$StructureType[which(A$StructureType == "REINFORCED_CONCRETE_PRECAST_MOMENT_RESISTI 
GING_FRAME")] =

"CONCRETE_RESISTING_FRAME"
ggplot(A, aes(x = StructureType)) + geom_bar() + theme(axis.text.x = element_text(



angle = 90,
hjust = 1,
vjust = 0.5,
size = 7

)) +
labs(x = "Structure Type", y = "Frequency")
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togram(bins = 90) +

ggplot(A, aes(x = log(InsuredValue))) + geom_histogram(binwidth = 0.1) +
labs(x = "Log-InsuredValue", y = "Frequency")

ggplot(A, aes(x = gshap)) + geom_histogram(bins = 90) +
labs(x = "gshap", y = "Frequency")

####boxplot de chaque variable par rapport a PurePremium

ggplot(A, aes(x = OccupancyType, y = log(PP))) + geom_boxplot() + theme(axis.text.x
=

element_te
xt(

angle =
90,

hjust =
1,

vjust =

size = 6
)) +

0.5,

labs(x = "OccupancyTpe", y = "log-PurePremium")

ggplot(A, aes(x = RoofType, y = log(PP))) + geom_boxplot() +
labs(x = "RoofType", y = "log-PurePremium")

ggplot(A, aes(x = NumStories, y = log(PP))) + geom_boxplot() +
labs(x = "NumStories", y = "log-PurePremium") + scale_x_discrete(limits =

c("1", "2", "3"
, "4", "5", "6", "7", "8", "9", "10", "15", NA))

ggplot(A, aes(x = YearBuilt, y = log(PP))) + geom_boxplot() +
labs(x = "YearBuilt", y = "log-PurePremium")

ggplot(A, aes(x = FloorLevel, y = log(PP))) + geom_boxplot() +
labs(x = "FloorLevel", y = "log-PurePremium") + scale_x_discrete(limits =

c("-1", "1", "2
", "3", "4", "5", "6", "7", "8", "9", "15", NA))

ggplot(A, aes(x = StructureType, y = log(PP))) + geom_boxplot() + theme(axis.text.x
=

element_te
xt(

angle =
90,

hjust =
1,

vjust =

size = 7
)) +

0.5,

labs(x = "StructureType", y = "log-PurePremium")



ggplot(A, aes(x = gshap, y = log(PP))) + geom_point(colour = "#595959") +

geom_smooth(
method = "lm",
se = FALSE,
color = '#088A08',
size = 1

) +
labs(x = "gshap", y = "log-PurePremium")

ggplot(A, aes(x = log(InsuredValue), y = log(PP))) + geom_point(colour =
"#595959") + geom_

smooth(

',

method = "lm",
se = FALSE,
color = '#088A08

size = 1
) +

labs(x = "log-InsuredValue", y = "log-PurePremium")

aggr(
B,
col = c('white', 'grey'),
labels = names(data),
cex.axis = .55,
gap = 3,
ylab = c("Histogram of missing data", "Pattern")

)
aggr_plot <- aggr(B, col=c('white','grey'), labels=names(data), cex.axis=.55, gap=3,
ylab=c("Histogram of missing data","Pattern"))

4 Loss estimation
4.1 Data treatment
Data loading

load(paste(getwd(),"/EventLossTableBySite_sample.RData",sep=""))
load(paste(getwd(),"/expo_sample.RData",sep=""))
load(paste(getwd(),"/SiteInfo.RData",sep=""))

Data treatment

# Rename the three columns of expo sample and site info to be able to merge the thre 
e tables
names(expo_sample)[1] = "LocationName"
names(SiteInfo)[1] = "LocationID"

# Merge of the tables
z = merge(EventLossTableBySite_sample, expo_sample, by = "LocationName")
z = merge(z, SiteInfo, by = "LocationID", sort = TRUE)

# Table of Loss by LocationID
L = aggregate(z$Loss, list(z$LocationID), sum)
names(L) = c("LocationID", "Loss")
LossByLoc = unique((merge(z[,-(4:6)], L, by = "LocationID")))

# Table of Loss by EventID
LossByEvent = aggregate(z$Loss, list(z$EventID), sum)
names(LossByEvent) = c("EventID", "Loss")



# Pure premium of each site
PurePremium = aggregate(z$Loss * z$Freq, list(z$LocationID), sum)
names(PurePremium) = c("LocationID", "PurePremium")

# Removing duplicates YearBuilt and OCCTYPE
LossByLoc = LossByLoc[,-c(1:4,14,15)]

# Replace UNKNOWN by NA
LossByLoc$StructureType[LossByLoc$StructureType == "UNKNOWN"] = NA
LossByLoc$RoofType[LossByLoc$RoofType == "UNKNOWN"] = NA

# Replacing NA by new modality "VM"
LossByLoc$RoofType[which(is.na(LossByLoc$RoofType))]="VM"
LossByLoc$StructureType[which(is.na(LossByLoc$StructureType))]="VM"
LossByLoc$OccupancyType[which(is.na(LossByLoc$OccupancyType))]="VM"
LossByLoc$YearBuilt[which(is.na(LossByLoc$YearBuilt))]="VM"
LossByLoc$NumStories[which(is.na(LossByLoc$NumStories))]="VM"
LossByLoc$FloorLevel[which(is.na(LossByLoc$FloorLevel))]="VM"

# Transforming qualitative variables into factor variable
for (i in colnames(LossByLoc[, sapply(LossByLoc, is.character)])) {
 
}
r

LossByLoc[, i] <- as.factor(unlist(LossByLoc[, i]))

m(i)

# Deletion of the 268 observations'without InsuredValue or gshap
LossByLoc = LossByLoc[-which(is.na(LossByLoc$InsuredValue)),]
LossByLoc = LossByLoc[-which(is.na(LossByLoc$gshap)),]

# Creation of LogLoss
LogLossByLoc = LossByLoc
LogLossByLoc$Loss = sapply(LossByLoc$Loss, log)
names(LogLossByLoc)[dim(LogLossByLoc)[2]] = "LogLoss"

Save output

save(LogLossByLoc, file = "3.Output/logdat.Rdata")
save(LossByLoc, file = "3.Output/dat.Rdata")

Creation of training and testing samples

n = dim(LossByLoc)[1]
BA = sample(1:n, dim(LossByLoc)[1] * 0.70)   #training sample
BT = setdiff(1:n, BA)

4.2 Linear model
Linear model on loss

fit1 = lm(
Loss ~.,
data = LossByLoc 

)
summary(fit1)
par(mfrow = c(2, 2))
plot(fit1)



Linear model on Log-loss

fit2 = lm(
LogLoss ~.,
data = LogLossByLoc 

)
summary(fit2)
par(mfrow = c(2, 2))
plot(fit2)

4.3 Regression trees
Removing some levels

# the first step is to remove some of the modality to avoid new levels, check if thi 
s is not removing too much observations
length(LossByLoc$StructureType[LossByLoc$StructureType == "WOOD_FRAME_MODERN"][-whic 
h(is.na(LossByLoc$StructureType[LossByLoc$StructureType == "WOOD_FRAME_MODERN"]))]) 
length(LossByLoc$StructureType[LossByLoc$StructureType == "EARTHQUAKE_RESISTIVE"][-w 
hich(is.na(LossByLoc$StructureType[LossByLoc$StructureType == "EARTHQUAKE_RESISTIVE" 
]))])
length(LossByLoc$StructureType[LossByLoc$StructureType == "MOBILE_HOME"][-which(is.n 
a(LossByLoc$StructureType[LossByLoc$StructureType == "MOBILE_HOME"]))])
length(LossByLoc$StructureType[LossByLoc$StructureType == "REINFORCED_CONCRETE_PRECA 
ST_MOMENT_RESISTIGING_FRAME"][- which(is.na(LossByLoc$StructureType[LossByLoc$Struct 
ureType == "REINFORCED_CONCRETE_PRECAST_MOMENT_RESISTIGING_FRAME"]))])
length(LossByLoc$StructureType[LossByLoc$StructureType == "MASONRY"][-which(is.na(Lo 
ssByLoc$StructureType[LossByLoc$StructureType == "MASONRY"]))])
length(LossByLoc$StructureType[LossByLoc$StructureType == "STEEL"][-which(is.na(Loss 
ByLoc$StructureType[LossByLoc$StructureType == "STEEL"]))])
length(LossByLoc$FloorLevel[LossByLoc$FloorLevel == "7"][-which(is.na(LossByLoc$Floo 
rLevel[LossByLoc$FloorLevel == "7"]))])
length(LossByLoc$FloorLevel[LossByLoc$FloorLevel == "8"][-which(is.na(LossByLoc$Floo 
rLevel[LossByLoc$FloorLevel == "8"]))])
length(LossByLoc$FloorLevel[LossByLoc$FloorLevel == "9"][-which(is.na(LossByLoc$Floo 
rLevel[LossByLoc$FloorLevel == "9"]))])
length(LossByLoc$OccupancyType[LossByLoc$OccupancyType == "COMMUNICATION_RADIO_TV"]) 
length(LossByLoc$OccupancyType[LossByLoc$OccupancyType == "PARKING"])
length(LossByLoc$OccupancyType[LossByLoc$OccupancyType == "SANITARY_SEWER"]) 
length(LossByLoc$OccupancyType[LossByLoc$OccupancyType == "EXHIBITION"])

 REINFORCED_CONCRETE : 3 
 MANSONRY : 4
 STELL : 5
 FloorLevel :

 8 : 2

# 
# 
# 
# 
# 
# 
# 

   7 : 4
 All others : 1

# => We can delete these levels, it will not have an impact on our data base

LossByLoc = LossByLoc[-which(LossByLoc$StructureType == "WOOD_FRAME_MODERN"),] 
LossByLoc = LossByLoc[-which(LossByLoc$StructureType == "EARTHQUAKE_RESISTIVE"),] 
LossByLoc = LossByLoc[-which(LossByLoc$StructureType == "MOBILE_HOME"),]
LossByLoc = LossByLoc[-which(

LossByLoc$StructureType == "REINFORCED_CONCRETE_PRECAST_MOMENT_RESISTIGING_FRAME" 
),]
LossByLoc = LossByLoc[-which(LossByLoc$StructureType == "MASONRY"), ]
LossByLoc = LossByLoc[-which(LossByLoc$StructureType == "STEEL"), ]
LossByLoc = LossByLoc[-which(LossByLoc$OccupancyType == "COMMUNICATION_RADIO_TV"),] 
LossByLoc = LossByLoc[-which(LossByLoc$OccupancyType == "PARKING"),]
LossByLoc = LossByLoc[-which(LossByLoc$OccupancyType == "SANITARY_SEWER"),] 
LossByLoc = LossByLoc[-which(LossByLoc$OccupancyType == "EXHIBITION"),]
LossByLoc = LossByLoc[-which(LossByLoc$OccupancyType == 
"HEAVY_FABRICATION_ASSEMBLY" ), ]



LossByLoc = LossByLoc[-which(LossByLoc$FloorLevel == "7"), ]
LossByLoc = LossByLoc[-which(LossByLoc$FloorLevel == "8"),] 
LossByLoc = LossByLoc[-which(LossByLoc$FloorLevel == "9"),] 
LossByLoc = LossByLoc[-which(LossByLoc$NumStories == "9"),]

First regression tree

dev.off()
tree.reg = rpart(Loss ~ .,

minsplit = 3,
xval = 2,
data = LossByLoc[BA, ])

prp(tree.reg, extra = 1)
printcp(tree.reg)
plotcp(tree.reg)

tree.opti = prune(tree.reg, cp = tree.reg$cptable[which.min(tree.reg$cptable[, 4]),
1])
prp(tree.opti, extra = 1)

rmse(predict(tree.opti, LossByLoc[BT, ]), LossByLoc[BT, ]$Loss)
rmse(predict(tree.opti, LossByLoc[BA, ]), LossByLoc[BA, ]$Loss)

Mean error on 100 trees for Loss by cross validation

k = 100
merr = NULL

for (i in 1:k) {
n = dim(LossByLoc)[1]
BA = sample(1:n, dim(LossByLoc)[1] * 0.60)   #training sample
BT = setdiff(1:n, BA)

tree.reg = rpart(Loss ~ .,
minsplit = 3,
xval = 2,
data = LossByLoc[BA, ])

tree.opti = prune(tree.reg, cp = tree.reg$cptable[which.min(tree.reg$cptable[, 4])
, 1])

pred = as.numeric(predict(tree.opti, LossByLoc[BT, ]))
err = pred - LossByLoc$Loss[BT]
merr[i] = mean(err) 

}
err = mean(abs(merr))
err

Mean error on 100 trees for LogLoss by cross validation

k = 1e3
merr = NULL
for (i in 1:k) {

n = dim(LogLossByLoc)[1]
BA = sample(1:n, dim(LogLossByLoc)[1] * 0.60)   #training sample
BT = setdiff(1:n, BA)

tree.reg = rpart(
LogLoss ~ InsuredValue + gshap + as.factor(RoofType) +

as.factor(StructureType) + as.factor(OccupancyType) +
as.factor(OCCSCHEME) + as.factor(BLDGCLASS) + as.factor(FloorLevel) +
as.factor(NumStories),

minsplit = 2,
xval = 2,
data = LogLossByLoc[BA, ]

)
tree.opti = prune(tree.reg, cp = tree.reg$cptable[which.min(tree.reg$cptable[, 4])

, 1])



Mean error on 100 trees for LogLoss by cross validation

tree.opti = prune(tree.reg, cp = tree.reg$cptable[which.min(tree.reg$cptable[, 4])
, 1])

pred = as.numeric(predict(tree.opti, LogLossByLoc[BT, ]))
err = exp(pred) - LossByLoc$Loss[BT]
merr[i] = mean(err) 

}
err = mean(abs(merr))
err

Mean error on 100 trees for LogLoss by cross validation

n = dim(LossByLoc)[1]

for (i in 1:n) {
BA = (1:n)[-i]
BT = setdiff(1:n, BA)

tree.reg = rpart(
Loss ~ InsuredValue + gshap + as.factor(RoofType) +

as.factor(StructureType) + as.factor(OccupancyType) +
as.factor(OCCSCHEME) + as.factor(BLDGCLASS) + as.factor(FloorLevel) +
as.factor(NumStories),

minsplit = 10,
xval = 2,
data = LossByLoc[BA, ]

)
tree.opti = prune(tree.reg, cp = tree.reg$cptable[which.min(tree.reg$cptable[, 4])

, 1])
merr[i] = mean(as.numeric(predict(tree.opti, LossByLoc[BT, ])) - LossByLoc$Loss[BT

])
}
err = mean(abs(merr))
err

4.4 Random forest
Adjustment of the random forest

RandomForest <- randomForest(Loss ~.,
data=LossByLoc[BA,],ntree=10)

summary(RandomForest)
importance(RandomForest)
varImpPlot(RandomForest)

rmse(predict(RandomForest,LossByLoc[BA,]),LossByLoc[BA,]$Loss)
rmse(predict(RandomForest,LossByLoc[BT,]),LossByLoc[BT,]$Loss)

LossByLoc$Sample=0
LossByLoc[BA,]$Sample="Training"
LossByLoc[BT,]$Sample="Testing"
LossByLoc$Error =0
LossByLoc[BA,]$Error= abs(predict(RandomForest,LossByLoc[BA,])-LossByLoc[BA,]$Loss)
LossByLoc[BT,]$Error=abs(predict(RandomForest,LossByLoc[BT,])-LossByLoc[BT,]$Loss)



Plot of the error

ggplot(LossByLoc[which(LossByLoc$Loss<1e9),],aes(x = Loss,y=Error,color=Sample))+geo
m_point(size=1.5)
LossByLoc$Sample=NULL
LossByLoc$Error=NULL

4.5 Logistic regression + random forest
Finding the threshold for extreme values

tlim = c(1e7, 5e7)
mrlplot(LossByLoc$Loss, tlim = tlim)

s = 3e7

Creation of a new variable “cata”, equal to 1 if normal value and 2 if extreme value

LossByLoc[, dim(LossByLoc)[2] + 1] = 1
names(LossByLoc)[dim(LossByLoc)[2]] = "cata"
LossByLoc[which(LossByLoc$Loss > s), dim(LossByLoc)[2]] = 2
LossByLoc$cata = as.factor(LossByLoc$cata)

Logistic regression

reglog <- multinom(cata ~ InsuredValue + gshap, data = LossByLoc[BA, ])

# Threshold optimization
par(mfrow = c(2, 1))
regtest = predict(reglog, LossByLoc[BA, ], type = "probs")
S = seq(0.2, 0.9, by = 0.005)
l = length(S)
err = rep(0, l)
for (i in 1:l)
{

Pred.tr = (regtest > S[i])
a = table(LossByLoc[BA, ]$cata, Pred.tr)
err[i] = (a[1, 2] + a[2, 1]) / length((LossByLoc[BA, ]$cata)) 

}
plot(S, err)
lines(S, err)
S[which.min(err)]
min(err)

regtest = predict(reglog, LossByLoc[BT, ], type = "probs")
S = seq(0.2, 0.9, by = 0.005)
l = length(S)
err = rep(0, l)
for (i in 1:l)
{

Pred.tr = (regtest > S[i])
a = table(LossByLoc[BT, ]$cata, Pred.tr)
err[i] = (a[1, 2] + a[2, 1]) / length((LossByLoc[BT, ]$cata)) 

}
plot(S, err)
lines(S, err)
S[which.min(err)]
min(err)

dev.off()
regtraining <- predict(reglog, LossByLoc[BT, ], type = "probs") 
fr <-

data.frame(score = regtraining, label = LossByLoc[BT, ]$cata) 
pred <- prediction(fr$score, fr$label)



# Error rate in function of the threshold
perf1 <- performance(pred, "fpr")
plot(perf1)
perf1 <- performance(pred, "fnr")
plot(perf1, col = 'red', add = TRUE)
perf1 <- performance(pred, "err")
plot(perf1, col = 'green', add = TRUE)

# => Keep default threshold : 0.5

# ROC curve
regtraining <- predict(reglog, LossByLoc[BT, ], type = "probs") 
fr <-

data.frame(score = regtraining, label = LossByLoc[BT, ]$cata) 
pred <- prediction(fr$score, fr$label)
perf <- performance(pred, "tpr", "fpr")
plot(perf, col = 'black')
#Calcul du AUC (aire sous la courbe)
perf2 <- performance(pred, "auc")
perf2@y.values[[1]]

Adjusting the forests to the two predicted types of observations

# Prediction of the Loss when cata = 2
suba = LossByLoc[which(LossByLoc[BA, ]$cata == 2), ] 
subt = LossByLoc[which(LossByLoc[BT, ]$cata == 2), ]

rf2 <- randomForest(Loss ~ . - cata,

data = suba, ntree = 10)
summary(rf2)
importance(rf2)
varImpPlot(rf2)

regapp <- as.numeric(predict(rf2, suba))
erra = abs(regapp - suba$Loss)

regtest <- as.numeric(predict(rf2, subt))
errt = abs(regtest - subt$Loss)

mean(errt)
mean(erra)

# Prediction of the Loss when cata = 1
suba = LossByLoc[which(LossByLoc[BA, ]$cata == 1), ]
subt = LossByLoc[which(LossByLoc[BT, ]$cata == 1), ]

rf1 <- randomForest(Loss ~ . - cata,
data = suba, ntree = 10)

summary(rf1)
importance(rf1)
varImpPlot(rf1)

regapp <- as.numeric(predict(rf1, suba))
erra = abs(regapp - suba$Loss)

regtest <- as.numeric(predict(rf1, subt))
errt = abs(regtest - subt$Loss)

mean(errt)
mean(erra)



Whole model prediction

cata = predict(reglog, LossByLoc[BA, ])
LossByLoc[BA, dim(LossByLoc)[2]] = cata

suba1 = LossByLoc[BA, ][which(LossByLoc[BA, ]$cata == 1), ]
suba2 = LossByLoc[BA, ][which(LossByLoc[BA, ]$cata == 2), ]
suba1$pred <- as.numeric(predict(rf1, suba1))
suba2$pred <- as.numeric(predict(rf2, suba2))

final = rbind(suba1, suba2)
rmse(final$pred, final$Loss)

cata = predict(reglog, LossByLoc[BT, ])
LossByLoc[BT, dim(LossByLoc)[2]] = cata

suba1 = LossByLoc[BT, ][which(LossByLoc[BT, ]$cata == 1), ]
suba2 = LossByLoc[BT, ][which(LossByLoc[BT, ]$cata == 2), ]
suba1$pred <- as.numeric(predict(rf1, suba1))
suba2$pred <- as.numeric(predict(rf2, suba2))

final = rbind(suba1, suba2)
rmse(final$pred, final$Loss)

5 Rate estimation
5.1 Data treatment
install.package('data.table')
install.package('stringr')
library(data.table)
library(stringr)

ELTperSite <-

get(load(file = file.path(
"1.Data", "EventLossTableBySite_sample.RData"

)))
expo <- get(load(file = file.path("1.Data", "expo_sample.RData"))) 
load(file = file.path("1.Data", "SiteInfo.RData"))

# List elements
# ls()
rm(EventLossTableBySite_sample)
rm(expo_sample)
ls()

# Caculate Pure Premium
head(ELTperSite)
summary(ELTperSite)
ELTperSite[, PP := Loss * Freq, ]
ELTperSite[, summary(PP)]

# Merge
head(ELTperSite)
dim(ELTperSite)
head(SiteInfo)
head(expo)



# LocationID=LOCNUM
dat <-

merge(ELTperSite,
SiteInfo,
by.x = 'LocationID',
by.y = 'LOCNUM',
all.x = T)

dim(dat)
head(dat)

# LocationName = Id
AllMergedData <-

merge(dat,
expo,
by.x = 'LocationName',
by.y = 'Id',
all.x = T)

head(AllMergedData)
rm(dat)
save(AllMergedData, file = "3.Output/AllMergedData.Rdata")

# PP Per site
head(AllMergedData)
AllMergedData[, summary(LocationID), ]
PPbySite <-

AllMergedData[, list(PP = sum(PP), InsuredValue = mean(InsuredValue)), by =
c("LocationID")]

dim(PPbySite)
varnames <- names(AllMergedData)[-c(1, 3, 4, 5, 6, 7, 8, 20)]

 "BLDGCLASS"  "OCCSCHEME"  "OCCTYPE"  "YEARBUILT" 

 "StructureType" "OccupancyType" "YearBuilt"  "NumStories" 

# varnames
# [1] "LocationID" 
"gshap"
# [7] "RoofType"   
"FloorLevel"
x <- AllMergedData[, varnames, with = FALSE]
setkey(x, "LocationID")
x1 <- unique(x)
PPbySite <- merge(PPbySite, x1, by = "LocationID", all.x = T)
save(PPbySite, file = "3.Output/PPbySite.Rdata")

# Total ptf Loss Per Event
ELT <-

AllMergedData[, list(Loss = sum(Loss), Freq = mean(Freq)), by = c("EventID")]
save(ELT, file = "3.Output/ELT.Rdata")
summary(PPbySite)

# NA treatment 1
dat <- PPbySite[!is.na(InsuredValue), ]

dat$YEARBUILT
dat[, YEARBUILT := as.numeric(substring(YEARBUILT, 1, 4)), ]
dat[YEARBUILT == 9999, YEARBUILT := NA, ]

dat$StructureType[dat$StructureType == "UNKNOWN"] = NA 
dat$RoofType[dat$RoofType == "UNKNOWN"] = NA
dat$OccupancyType[which(is.na(dat$OccupancyType))] = NA 
dat$YearBuilt[which(is.na(dat$YearBuilt))] = NA
dat$NumStories[which(is.na(dat$NumStories))] = NA dat
$FloorLevel[which(is.na(dat$FloorLevel))] = NA

# Convert into factor 
for (i in colnames(dat[, sapply(dat, is.character)])) {

 
}
r

dat[, i] <- as.factor(unlist(dat[, i]))

m(i)

# Removing YearBuilt, OCCSCHME and Occtype because they are dupplicate
dat[, OCCSCHEME := NULL, ] #OccupancyType
dat[, OCCTYPE := NULL, ] #OccupancyType
dat[, YEARBUILT := NULL, ] #YearBuilt



# Calulate pure premium
dat[, rate := PP / InsuredValue, ]

# NA treatement 2 : MICE method
imputed.data = mice(dat,

m = 1,
method = 'rf',
maxit = 5)

completeData = complete(imputed.data, 1, include = FALSE) #sum(is.na(completeData))
il ne reste plus de NA
xyplot(imputed.data, YearBuilt ~ gshap, main = "V?rification de l'imputation")
dat.imput = completeData
rm(completeData)
rm(imputed.data)
dat = dat.imput

# Creation of the training and testing samples
set.seed(1) # fix the random generator to build the samples because this one doesn't
have problems of new levels
dat = as.data.frame(dat)
n = dim(dat)[1]
TR = sample(1:n, dim(dat)[1] * 0.70) #training
TS = setdiff(1:n, TR) #test
datTR = dat[TR, -c(1:3)]
datTS = dat[TS, -c(1:3)]

5.2 Random forest
First Random forest

rf <- randomForest(rate ~ ., data = datTR,mtry=2,ntree=10)
varImpPlot(rf)
rmse(predict(rf, datTR) *  dat[TR,]$InsuredValue, dat[TR,]$PP)
rmse(predict(rf, datTS) * dat[TS,]$InsuredValue, dat[TS,]$PP)

Hyper-parametrization

ete = NULL
etr = NULL
l = seq(from = 1, to = 8, by = 1) #nombre de variable explicative
n = seq(from = 5, to = 600, by = 20) #nombre d'arbre
m = seq(from = 1, to = 8, by = 1)
b <- sample(1:nrow(x), nrow(x) * 0.7, replace = F)
for (h in 1:length(l)) {
 
}
e

ete[[h]] = matrix(rep(0, length(n) * length(m)), ncol = length(n))

tr = ete

for (u in 1:length(l)) {
x = dat[TR, -c(1:3)]
for (v in 1:(dim(x)[2] - l[u] - 1)) {

rm <-
h2o.randomForest(

x = 1:(dim(x)[2] - 1),
y = length(x),

y = length(x),
training_frame = as.h2o(x)

)
x = x[, -which(colnames(x) == h2o.varimp(rm)$variable[length(h2o.varimp(rm)$vari

able)])]
}
c=1
for (i in m) {

if (i <= l[u]) {
k = 1
for (j in n) {

set.seed(1212)
f <- randomForest(rate ~ .,

data = x,
ntree = j,
mtry = i)

 
}
s



PP)

PP)

etr[[u]][c, k] = rmse(predict(f, datTR) * dat[TR, ]$InsuredValue, dat[TR, ]$

ete[[u]][c, k] = rmse(predict(f, datTS) * dat[TS, ]$InsuredValue, dat[TS, ]$

k = k + 1
print(k)
print(c)

}
}
c = c + 1

} 
}
save(ete, file = 'ete.Rdata')
save(etr, file = 'etr.Rdata')

rferr = NULL
for (i in 1:length(l)) {

rferr$var = c(rferr$var, rep(l[i], length(ete[[i]][which(ete[[i]] != 0)])))
rferr$varforet = c(rferr$varforet, sort(rep(m[m - l[i] <= 0], length(n))))
rferr$arbre = rep(n, length(rferr$var))
rferr$errtest = c(rferr$errtest, as.numeric(ete[[i]][which(ete[[i]] != 0)]))
rferr$errapp = c(rferr$errapp, as.numeric(etr[[i]][which(etr[[i]] != 0)])) 

}
View(rferr)
rferr <- as.data.frame(rferr)

rferr$sumerr = rferr$errapp + rferr$errtest
rferr[which.min(rferr$errapp), ]
rferr[which.min(rferr$errtest), ]
rferr[which.min(rferr$sumerr), ]

plot_ly(
rferr,
x =  ~ arbre,
y =  ~ varforet,
z =  ~ err,
color = ~ var

)

j = rferr[which.min(rferr$errtest), ]$arbre # j = 145
i = rferr[which.min(rferr$errtest), ]$varforet # i = 2
u = rferr[which.min(rferr$errtest), ]$var # u = 7

Final model

x = dat[TR,-c(1:3)]
for (v in 1:(dim(x)[2] - u - 1)) {

rm <-
h2o.randomForest(

x = 1:(dim(x)[2] - 1),
y = length(x),
training_frame = as.h2o(x)

)
x = x[,-which(colnames(x) == h2o.varimp(rm)$variable[length(h2o.varimp(rm)$variabl

e)])]
}

rf.final <- randomForest(rate ~ .,
data = datTR,
ntree = j,
mtry = i)

varImpPlot(rf.final)

rmse(predict(rf.final, datTR) * dat[TR,]$InsuredValue, dat[TR,]$PP)
rmse(predict(rf.final, datTS) * dat[TS,]$InsuredValue, dat[TS,]$PP)



e1tr = NULL
e1tr$pred = predict(rf.final, datTR) *  dat[TR,]$InsuredValue
e1tr$pp = dat[TR,]$PP
e1tr$err = e1tr$pp - e1tr$pred
e1tr$Model = "Optimized"
e1tr = as.data.frame(e1tr)

e2tr = NULL
e2tr$pred = predict(rf, datTR) *  dat[TR,]$InsuredValue
e2tr$pp = dat[TR,]$PP
e2tr$err = e2tr$pp - e2tr$pred
e2tr$Model = "Default"
e2tr = as.data.frame(e2tr)
etr = as.data.frame(rbind(e1tr, e2tr))

e1ts = NULL
e1ts$pred = predict(rf.final, datTS) *  dat[TS,]$InsuredValue
e1ts$pp = dat[TS,]$PP
e1ts$err = e1ts$pp - e1ts$pred
e1ts$Model = "Optimized"
e1ts = as.data.frame(e1ts)

e2ts = NULL
e2ts$pred = predict(rf, datTS) *  dat[TS,]$InsuredValue
e2ts$pp = dat[TS,]$PP
e2ts$err = e2ts$pp - e2ts$pred
e2ts$Model = "Default"
e2ts = as.data.frame(e2ts)
ets = as.data.frame(rbind(e1ts, e2ts))

ggplot(etr[which(etr$pp < 1e5), ], aes(x = pp, y = abs(err))) +  geom_point(aes(colo
ur = Model, shape = Model)) + geom_smooth(aes(colour = Model), method = lm, se=FALSE
, fullrange = TRUE) + geom_abline(slope = 0, intercept = 0,lwd =.1)
ggplot(ets[which(ets$pp < 1e5), ], aes(x = pp, y = abs(err))) +  geom_point(aes(colo
ur = Model, shape = Model)) + geom_smooth(aes(colour=Model),method=lm, se=FALSE, ful
lrange=TRUE )+ geom_abline(slope=0, intercept=0,lwd=.1)

ggplot(e2tr[which(e2tr$pp < 1e5), ], aes(x = pp, y = err)) + geom_point() + geom_abl
ine(slope = 0, intercept = 0, lwd = .1) + geom_ribbon(aes(ymin=pp*0.20,ymax=-pp*0.20
),fill = "green",alpha=0.1)+ geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill = "re
d",alpha=0.1) + geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = "red",alpha=0.1)
ggplot(e2ts[which(e2ts$pp < 1e5), ], aes(x = pp, y = err)) + geom_point() + geom_abl
ine(slope = 0, intercept = 0, lwd = .1) + geom_ribbon(aes(ymin=pp*0.20,ymax=-pp*0.20
),fill = "green",alpha=0.1)+ geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill = "re
d",alpha=0.1) + geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = "red",alpha=0.1)

ggplot(e1tr[which(e1tr$pp < 1e5), ], aes(x = pp, y = err)) + geom_point() + geom_abl
ine(slope = 0, intercept = 0 ,lwd = .1) + geom_ribbon(aes(ymin=pp*0.20,ymax=-pp*0.20
),fill = "green",alpha=0.1)+ geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill = "re
d",alpha=0.1) + geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = "red",alpha=0.1)
ggplot(e1ts[which(e1ts$pp < 1e5), ], aes(x = pp, y = err)) + geom_point() + geom_abl
ine(slope = 0, intercept = 0, lwd = .1) + geom_ribbon(aes(ymin=pp*0.20,ymax=-pp*0.20
),fill = "green",alpha=0.1)+ geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill = "re
d",alpha=0.1) + geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = "red",alpha=0.1)



Lorenz curve

preddtr = predict(rf, dat[TR, ]) * dat[TR,]$InsuredValue
predotr =  predict(rf.final, dat[TR, ]) * dat[TR,]$InsuredValue

preddts = predict(rf, dat[TS, ]) * dat[TS,]$InsuredValue
predots =  predict(rf.final, dat[TS, ]) * dat[TS,]$InsuredValue

premium = as.matrix(NA)
cost = as.vector(dat[TS,]$PP)
premium = cbind(preddts, cost)
colnames(premium) = c("RF ", "PM")
LorenzCurve(cost, premium)

premium = as.matrix(NA)
cost = as.vector(dat[TS,]$PP)
premium = cbind(preddts, predots, cost)
colnames(premium) = c("Deault ", "Optim  ", "Perfect")
LorenzCurve(cost, premium)

5.3 Generalized Linear Model
Finding the distribution

# 4.1 Fiding the distribution 
x = dat$rate
den <- density(x)
d <- data.frame(x = den$x,

y = den$y,
limits = c(0, 0))

fit.params <- fitdistr(dat$rate, "gamma")
ggplot(data = d) +

geom_histogram(data = as.data.frame(x), aes(x = x, y = ..density..), bins =
80) +

geom_line(aes(
x = d$x,
y = dgamma(d$x, fit.params$estimate["shape"], fit.params$estimate["rate"])

), color = "red", size = 1)

Building the model

Y = "rate"
X = c(

"YearBuilt"  ,
"BLDGCLASS"  ,
"FloorLevel"  ,
"gshap",
"StructureType",
"OccupancyType",
"RoofType",
"NumStories"

)  # Variables explicatives

glm <- h2o.glm(
y = Y,
x = X,
training_frame = as.h2o(datTR),
keep_cross_validation_predictions = TRUE,
family = "gamma" #,link='log' 

)
print(glm)
glm@model$coefficients # Coeff pour chaque variable

rmse(as.vector(predict(glm, as.h2o(datTR))) * dat[TR,]$InsuredValue, dat[TR,]$PP)
rmse(as.vector(predict(glm, as.h2o(datTS))) * dat[TS,]$InsuredValue, dat[TS,]$PP)



Plotting results

e1tr = NULL
e1tr$pred = as.vector(predict(glm, as.h2o(datTR))) *  dat[TR,]$InsuredValue
e1tr$pp = dat[TR,]$PP
e1tr$err = e1tr$pp - e1tr$pred
e1tr = as.data.frame(e1tr)

e1ts = NULL
e1ts$pred = as.vector(predict(glm, as.h2o(datTS))) *  dat[TS,]$InsuredValue
e1ts$pp = dat[TS,]$PP
e1ts$err = e1ts$pp - e1ts$pred
e1ts = as.data.frame(e1ts)

ggplot(e1tr[which(e1tr$pp < 1e5),], aes(x = pp, y = err)) + geom_point() + geom_abli
ne(slope = 0, intercept = 0 ,lwd = .1) + geom_ribbon(aes(ymin=pp*0.20,ymax=-pp*0.20)
,fill = "green",alpha=0.1)+ geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill = "red
",alpha=0.1) + geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = "red",alpha=0.1)
ggplot(e1ts[which(e1ts$pp < 1e5), ], aes(x = pp, y = err)) + geom_point() + geom_abl
ine(slope = 0, intercept = 0, lwd = .1) + geom_ribbon(aes(ymin=pp*0.20,ymax=-pp*0.20
),fill = "green",alpha=0.1)+ geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill = "re
d",alpha=0.1) + geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = "red",alpha=0.1)

Lorenz curve

preddts = as.vector(predict(glm, as.h2o(datTS))) * dat[TS,]$InsuredValue
predots = as.vector(predict(glm, as.h2o(datTS))) * dat[TS,]$InsuredValue

premium = as.matrix(NA)
cost = as.vector(dat[TS,]$PP)
premium = cbind(preddts, cost)
colnames(premium) = c("GLM ", "PM   ")
LorenzCurve(cost, premium)

5.4 Gradient Boosting Model
First model

# 5.1 First model 
gbm <- gbm(

rate ~ .,
data = datTR,
distribution = "gaussian",
cv.folds = 2,
n.trees = 300,
shrinkage = 0.6

)
rmse(predict(gbm, datTR, n.trees = 300) * dat[TR,]$InsuredValue, dat[TR,]$PP)
rmse(predict(gbm, datTS, n.trees = 300) * dat[TS,]$InsuredValue, dat[TS,]$PP)

Second model with the optimal number of trees

gbm.perf(gbm, method = 'cv')
a = gbm.perf(gbm)
gbm2 <- gbm(

rate ~ .,
data = datTR, distribution = "gaussian", cv.folds = 2, n.trees = a, shrinkage = 0.6

)

rmse(predict(gbm2, datTR, n.trees = a) * dat[TR,]$InsuredValue, dat[TR,]$PP)
rmse(predict(gbm2, datTS, n.trees = a) * dat[TS,]$InsuredValue, dat[TS,]$PP)

summary(gbm, plotit = TRUE)
par(mfrow = c(2, 4))
for (i in 1:8) {

plot(gbm2, i.var = i)
}



Hyper-Parametrization using caret

caretGrid <-
expand.grid(

interaction.depth = c(1, 3, 5),
n.trees = (0:50) * 50,
shrinkage = c(0.2, 0.1, 0.01, 0.001),
n.minobsinnode = 10

)
metric <- "RMSE"
trainControl <- trainControl(method = "cv", number = 2)

gbm.caret <-
train(

rate ~ .,
data = dat[TR,-c(1:3)],
distribution = "gaussian",
method = "gbm",
trControl = trainControl,
verbose = FALSE,
tuneGrid = caretGrid,
metric = metric,
bag.fraction = 0.75

)

print(gbm.caret)
# "The final values used for the model were n.trees = 750, interaction.depth = 3, sh
rinkage = 0.1 and n.minobsinnode = 10."

Building the final GBM model

gbm.final <-
gbm(

rate ~ .,
data = datTR,
distribution = "gaussian",
n.trees = 750,
interaction.depth = 3,
shrinkage = 0.1 ,
n.minobsinnode = 10

)
rmse(predict(gbm.final, datTR, n.trees = 750) * dat[TR, ]$InsuredValue,

dat[TR, ]$PP)
rmse(predict(gbm.final, datTS, n.trees = 750) * dat[TS, ]$InsuredValue,

dat[TS, ]$PP)

Plotting results

e1tr = NULL
e1tr$pred = predict(gbm.final, n.trees = a, datTR) *  dat[TR, ]$InsuredValue
e1tr$pp = dat[TR, ]$PP
e1tr$err = e1tr$pp - e1tr$pred
e1tr$Model = "Optimized"
e1tr = as.data.frame(e1tr)

e2tr = NULL
e2tr$pred = predict(gbm2, n.trees = a, datTR) *  dat[TR, ]$InsuredValue
e2tr$pp = dat[TR, ]$PP
e2tr$err = e2tr$pp - e2tr$pred
e2tr$Model = "Default"
e2tr = as.data.frame(e2tr)
etr = as.data.frame(rbind(e1tr, e2tr))



e1ts = NULL
e1ts$pred = predict(gbm.final, n.trees = a, datTS) *  dat[TS, ]$InsuredValue
e1ts$pp = dat[TS, ]$PP
e1ts$err = e1ts$pp - e1ts$pred
e1ts$Model = "Optimized"
e1ts = as.data.frame(e1ts)

e2ts = NULL
e2ts$pred = predict(gbm2, n.trees = a, datTS) *  dat[TS, ]$InsuredValue
e2ts$pp = dat[TS, ]$PP
e2ts$err = e2ts$pp - e2ts$pred
e2ts$Model = "Default"
e2ts = as.data.frame(e2ts)
ets = as.data.frame(rbind(e1ts, e2ts))

ggplot(etr[which(etr$pp < 1e5), ], aes(x = pp, y = abs(err))) +  geom_point(aes(colo 
ur = Model, shape = Model)) + geom_smooth(aes(colour = Model), method = lm, se=FALSE , 
fullrange = TRUE) + geom_abline(slope = 0, intercept = 0,lwd =.1)
ggplot(ets[which(ets$pp < 1e5), ], aes(x = pp, y = abs(err))) +  geom_point(aes(colo 
ur = Model, shape = Model)) + geom_smooth(aes(colour=Model),method=lm, se=FALSE, ful 
lrange=TRUE )+ geom_abline(slope=0, intercept=0,lwd=.1)

ggplot(e2tr[which(e2tr$pp < 1e5), ], aes(x = pp, y = err)) + geom_point() + geom_abl 
ine(slope = 0, intercept = 0, lwd = .1) + geom_ribbon(aes(ymin=pp*0.20,ymax=-
pp*0.20 ),fill = "green",alpha=0.1)+ geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill 
= "re d",alpha=0.1) + geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = 
"red",alpha=0.1) ggplot(e2ts[which(e2ts$pp < 1e5), ], aes(x = pp, y = err)) + 
geom_point() + geom_abl ine(slope = 0, intercept = 0, lwd = .1) + 
geom_ribbon(aes(ymin=pp*0.20,ymax=-pp*0.20 ),fill = "green",alpha=0.1)+ 
geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill = "re d",alpha=0.1) + 
geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = "red",alpha=0.1)

ggplot(e1tr[which(e1tr$pp < 1e5), ], aes(x = pp, y = err)) + geom_point() + geom_abl 
ine(slope = 0, intercept = 0 ,lwd = .1) + geom_ribbon(aes(ymin=pp*0.20,ymax=-
pp*0.20 ),fill = "green",alpha=0.1)+ geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill 
= "re d",alpha=0.1) + geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = 
"red",alpha=0.1) ggplot(e1ts[which(e1ts$pp < 1e5), ], aes(x = pp, y = err)) + 
geom_point() + geom_abl ine(slope = 0, intercept = 0, lwd = .1) + 
geom_ribbon(aes(ymin=pp*0.20,ymax=-pp*0.20 ),fill = "green",alpha=0.1)+ 
geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill = "re d",alpha=0.1) + 
geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = "red",alpha=0.1)

Lorenz curve

preddtr1 = predict(gbm2, n.trees = a, dat[TR,]) * dat[TR, ]$InsuredValue
preddtr2 = predict(gbm, n.trees = 300, dat[TR,]) * dat[TR, ]$InsuredValue
predotr =  predict(gbm.final, n.trees = 750, dat[TR,]) * dat[TR, ]$InsuredValue

preddts1 = predict(gbm2, dat[TS,], n.trees = a) * dat[TS, ]$InsuredValue
preddts2 = predict(gbm, dat[TS,], n.trees = 300) * dat[TS, ]$InsuredValue
predots =  predict(gbm.final, dat[TS,], n.trees = 750) * dat[TS, ]$InsuredValue

premium = as.matrix(NA)
cost = as.vector(dat[TS, ]$PP)

")
premium = cbind(preddts1, preddts2, cost)
colnames(premium) = c("GBM1", "GBM2", "PM
LorenzCurve(cost, premium)

premium = as.matrix(NA)
cost = as.vector(dat[TS, ]$PP)
premium = cbind(preddts1, preddts2, predots, cost)
colnames(premium) = c("Deault1", "Default2", "Optim   ", "Perfect")
LorenzCurve(cost, premium)



5.5 Extreme Gradient Boosting
Data treatment for XGBoost entry

pacman::p_load(xgboost)

data = data.matrix(datTR[, -dim(datTR)[2]])
label = datTR$rate * 1e6
xgmat = xgb.DMatrix(data, label = label)

First model

 
)
r

xgb <- xgboost(
data = xgmat,
nrounds = 200

mse((predict(xgb, data.matrix(datTR)) / 1e6) *  dat[TR,]$InsuredValue, dat[TR,]$PP)
rmse((predict(xgb, data.matrix(datTS)) / 1e6) * dat[TS,]$InsuredValue, dat[TS,]$PP)

importance_matrix <- xgb.importance(colnames(data), model = xgb)
xgb.ggplot.importance(importance_matrix,rel_to_first = TRUE, xlab = "Relative import
ance")
xgb.ggplot.deepness(xgb,which="med.weight")
xgb.plot.multi.trees(xgb,feature_names = colnames(data), features_keep = 2)

xgbtest <- xgboost(
data = xgmat,
nrounds = 1,
max_depth=2 

)
xgb.plot.multi.trees(xgbtest,feature_names = colnames(data))
xgb.plot.tree(feature_names =colnames(data), model = xgbtest)

Hyper-parametrization

nrounds = (seq(0, 500, length.out = 50))
nrounds[1] = 1
max_depth = floor(seq(0, 60, by = 10))
max_depth[1] = 1
eta = 0.1

# others parameters we could vary
# eta = seq(0.1, 0.9, length.out = 9)
# gamma = floor(seq(0, 100, length.out = 10))
# min_child_weight = floor(seq(0, 100, length.out = 10))
# max_delta_step = floor(seq(0, 100, length.out = 10))
# subsample = round(seq(0, 1, length.out = 10), digits = 2)
# colsample_bytree = round(seq(0.2, 1, length.out = 10), digits = 2)
# colsample_bylevel = round(seq(0.2, 1, length.out = 10), digits = 2)

xgberr = NULL
i = 1
for (a in nrounds) {

for (c in max_depth) {
xgb.fit = xgboost(

data = xgmat,
nrounds = a,
eta = eta,
max_depth = c

)

xgberr$nrounds[i] = a
xgberr$max.depth[i] = c
xgberr$errapp[i] = rmse((predict(xgb.fit, data.matrix(datTR)) / 1e6) *  dat[TR,]

$InsuredValue, dat[TR,]$PP))



xgberr$errtest[i] = rmse((predict(xgb.fit, data.matrix(datTS)) / 1e6) * dat[TS,]
$InsuredValue, dat[TS,]$PP)

i = i + 1
} 

}
xgberr = as.data.frame(xgberr)
xgberr$sumerr = xgberr$errapp + xgberr$errtest
xgberr[which.min(xgberr$errapp), ]
xgberr[which.min(xgberr$errtest), ]
xgberr[which.min(xgberr$sumerr), ]
save(xgberr, file = 'xgberr.RData')

m = xgberr[which.min(xgberr$errtest),]$max.depth
n = xgberr[which.min(xgberr$errtest),]$nrounds

# n = 80 and m = 7 eta =0.1

Final model

xgb.final <- xgboost(
data = xgmat,
nrounds = 80,
eta=0.1,
max_depth=7 

)
rmse((predict(xgb.final, data.matrix(datTR)) / 1e6) *  dat[TR,]$InsuredValue, dat[TR
,]$PP)
rmse((predict(xgb.final, data.matrix(datTS)) / 1e6) * dat[TS,]$InsuredValue, dat[TS,
]$PP)

importance_matrix <- xgb.final.importance(colnames(data), model = xgb)
xgb.ggplot.importance(importance_matrix,rel_to_first = TRUE, xlab = "Relative import
ance")
xgb.ggplot.deepness(xgb)
xgb.plot.multi.trees(xgb,feature_names = colnames(data), features_keep = 5)

Plotting results

e1tr = NULL
e1tr$pred = (predict(xgb.final, data.matrix(datTR))/ 1e6) *  dat[TR, ]$InsuredValue 
e1tr$pp = dat[TR, ]$PP
e1tr$err = e1tr$pp-e1tr$pred
e1tr$Model = "Optimized"
e1tr=as.data.frame(e1tr)

e2tr = NULL
e2tr$pred = (predict(xgb, data.matrix(datTR))/ 1e6) *  dat[TR, ]$InsuredValue 
e2tr$pp = dat[TR, ]$PP
e2tr$err = e2tr$pp-e2tr$pred
e2tr$Model = "Default"
e2tr=as.data.frame(e2tr)
etr=as.data.frame(rbind(e1tr,e2tr))

e1ts = NULL
e1ts$pred = (predict(xgb.final, data.matrix(datTS))/ 1e6) *  dat[TS, ]$InsuredValue 
e1ts$pp = dat[TS, ]$PP
e1ts$err = e1ts$pp-e1ts$pred
e1ts$Model = "Optimized"
e1ts=as.data.frame(e1ts)



e2ts = NULL
e2ts$pred = (predict(xgb, data.matrix(datTS)) / 1e6) *  dat[TS, ]$InsuredValue e2ts$pp 
= dat[TS, ]$PP
e2ts$err = e2ts$pp-e2ts$pred
e2ts$Model = "Default"
e2ts=as.data.frame(e2ts)
ets=as.data.frame(rbind(e1ts,e2ts))

ggplot(etr[which(etr$pp < 1e5), ], aes(x = pp, y = abs(err))) +  geom_point(aes(colo 
ur = Model, shape = Model)) + geom_smooth(aes(colour = Model), method = lm, se=FALSE , 
fullrange = TRUE) + geom_abline(slope = 0, intercept = 0,lwd =.1)
ggplot(ets[which(ets$pp < 1e5), ], aes(x = pp, y = abs(err))) +  geom_point(aes(colo 
ur = Model, shape = Model)) + geom_smooth(aes(colour=Model),method=lm, se=FALSE, ful 
lrange=TRUE )+ geom_abline(slope=0, intercept=0,lwd=.1)

ggplot(e2tr[which(e2tr$pp < 1e5), ], aes(x = pp, y = err)) + geom_point() + geom_abl 
ine(slope = 0, intercept = 0, lwd = .1) + geom_ribbon(aes(ymin=pp*0.20,ymax=-
pp*0.20 ),fill = "green",alpha=0.1)+ geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill 
= "re d",alpha=0.1) + geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = 
"red",alpha=0.1) ggplot(e2ts[which(e2ts$pp < 1e5), ], aes(x = pp, y = err)) + 
geom_point() + geom_abl ine(slope = 0, intercept = 0, lwd = .1) + 
geom_ribbon(aes(ymin=pp*0.20,ymax=-pp*0.20 ),fill = "green",alpha=0.1)+ 
geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill = "re d",alpha=0.1) + 
geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = "red",alpha=0.1)

ggplot(e1tr[which(e1tr$pp < 1e5), ], aes(x = pp, y = err)) + geom_point() + geom_abl 
ine(slope = 0, intercept = 0 ,lwd = .1) + geom_ribbon(aes(ymin=pp*0.20,ymax=-
pp*0.20 ),fill = "green",alpha=0.1)+ geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill 
= "re d",alpha=0.1) + geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = 
"red",alpha=0.1) ggplot(e1ts[which(e1ts$pp < 1e5), ], aes(x = pp, y = err)) + 
geom_point() + geom_abl ine(slope = 0, intercept = 0, lwd = .1) + 
geom_ribbon(aes(ymin=pp*0.20,ymax=-pp*0.20 ),fill = "green",alpha=0.1)+ 
geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill = "re d",alpha=0.1) + 
geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = "red",alpha=0.1)

Lorenz curve

preddtr = predict(xgb, data.matrix(dat[TR,])/1e6) * dat[TR, ]$InsuredValue
predotr = predict(xgb.final, data.matrix(dat[TR,])/1e6) * dat[TR, ]$InsuredValue

preddts = predict(xgb, data.matrix(dat[TS,])/1e6) * dat[TS, ]$InsuredValue
predots = predict(xgb.final, data.matrix(dat[TS,])/1e6) * dat[TS, ]$InsuredValue

premium=as.matrix(NA)
cost = as.vector(dat[TS, ]$PP)
premium = cbind(preddts, cost)
colnames(premium) = c( "XGB ", "PM  ")
LorenzCurve(cost, premium)

premium=as.matrix(NA)
cost = as.vector(dat[TS, ]$PP)
premium = cbind(preddts,predots, cost)
colnames(premium) = c("Deault ", "Optim  ", "Perfect")
LorenzCurve(cost, premium)



5.6 Support Vector Machine
First model

fit.svm = svm(rate ~ . ,
data = datTR,
kernel = 'radial')

rmse(predict(fit.svm, datTR) * dat[TR,]$InsuredValue, dat[TR,]$PP)
rmse(predict(fit.svm, datTS) * dat[TS,]$InsuredValue, dat[TS,]$PP)

Hyper-parametrization using caret

tuneResult <-
tune(svm,

rate ~ . ,
data = datTR,
ranges = list(epsilon = seq(0, 1, 0.1),

cost = 2 ^
(2:9)))

print(tuneResult) # Meilleur svm
plot(tuneResult, theta = 1) # Grille de r?sultat des simulations faites pour la rech
erche du meilleur svm

#epsilon = 0.5, cost = 16

Building final model

svm.final = svm(
rate ~ . ,
data = datTR,
epsilon = tuneResult$best.parameters[1],
cost = tuneResult$best.parameters[2] 

)
rmse(predict(svm.final, datTR) * dat[TR,]$InsuredValue, dat[TR,]$PP)
rmse(predict(svm.final, datTS) * dat[TS,]$InsuredValue, dat[TS,]$PP)

Plotting results

e1tr = NULL
e1tr$pred = predict(svm.final, datTR) *  dat[TR,]$InsuredValue
e1tr$pp = dat[TR,]$PP
e1tr$err = e1tr$pp - e1tr$pred
e1tr$Model = "Optimized"
e1tr = as.data.frame(e1tr)

e2tr = NULL
e2tr$pred = predict(fit.svm, datTR) *  dat[TR,]$InsuredValue
e2tr$pp = dat[TR,]$PP
e2tr$err = e2tr$pp - e2tr$pred
e2tr$Model = "Default"
e2tr = as.data.frame(e2tr)
etr = as.data.frame(rbind(e1tr, e2tr))

e1ts = NULL
e1ts$pred = predict(svm.final, datTS) *  dat[TS,]$InsuredValue
e1ts$pp = dat[TS,]$PP
e1ts$err = e1ts$pp - e1ts$pred
e1ts$Model = "Optimized"
e1ts = as.data.frame(e1ts)



e2ts = NULL
e2ts$pred = predict(fit.svm, datTS) *  dat[TS,]$InsuredValue
e2ts$pp = dat[TS,]$PP
e2ts$err = e2ts$pp - e2ts$pred
e2ts$Model = "Default"
e2ts = as.data.frame(e2ts)
ets = as.data.frame(rbind(e1ts, e2ts))

ggplot(etr[which(etr$pp < 1e5), ], aes(x = pp, y = abs(err))) +  geom_point(aes(colo 
ur = Model, shape = Model)) + geom_smooth(aes(colour = Model), method = lm, se=FALSE , 
fullrange = TRUE)
ggplot(ets[which(ets$pp < 1e5), ], aes(x = pp, y = abs(err))) +  geom_point(aes(colo 
ur = Model, shape = Model)) + geom_smooth(aes(colour=Model),method=lm, se=FALSE, ful 
lrange=TRUE )

ggplot(e2tr[which(e2tr$pp < 1e5), ], aes(x = pp, y = err)) + geom_point() + geom_abl 
ine(slope = 0, intercept = 0, lwd = .1) + geom_ribbon(aes(ymin=pp*0.20,ymax=-
pp*0.20 ),fill = "green",alpha=0.1)+ geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill 
= "re d",alpha=0.1) + geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = 
"red",alpha=0.1) ggplot(e2ts[which(e2ts$pp < 1e5), ], aes(x = pp, y = err)) + 
geom_point() + geom_abl ine(slope = 0, intercept = 0, lwd = .1) + 
geom_ribbon(aes(ymin=pp*0.20,ymax=-pp*0.20 ),fill = "green",alpha=0.1)+ 
geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill = "re d",alpha=0.1) + 
geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = "red",alpha=0.1)

ggplot(e1tr[which(e1tr$pp < 1e5), ], aes(x = pp, y = err)) + geom_point() + geom_abl 
ine(slope = 0, intercept = 0 ,lwd = .1) + geom_ribbon(aes(ymin=pp*0.20,ymax=-
pp*0.20 ),fill = "green",alpha=0.1)+ geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill 
= "re d",alpha=0.1) + geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = 
"red",alpha=0.1) ggplot(e1ts[which(e1ts$pp < 1e5), ], aes(x = pp, y = err)) + 
geom_point() + geom_abl ine(slope = 0, intercept = 0, lwd = .1) + 
geom_ribbon(aes(ymin=pp*0.20,ymax=-pp*0.20 ),fill = "green",alpha=0.1)+ 
geom_ribbon(aes(ymin=-pp*0.20,ymax=-pp*0.50),fill = "re d",alpha=0.1) + 
geom_ribbon(aes(ymin=pp*0.20,ymax=pp*0.50),fill = "red",alpha=0.1)

Lorenz curve

preddtr = predict(fit.svm, dat[TR,]) * dat[TR, ]$InsuredValue
predotr =  predict(svm.final, dat[TR,]) * dat[TR, ]$InsuredValue

preddts = predict(fit.svm, dat[TS,]) * dat[TS, ]$InsuredValue
predots =  predict(svm.final, dat[TS,]) * dat[TS, ]$InsuredValue

premium = as.matrix(NA)
cost = as.vector(dat[TS, ]$PP)
premium = cbind(preddts, cost)
colnames(premium) = c("SVM ", "PM")
LorenzCurve(cost, premium)

premium = as.matrix(NA)
cost = as.vector(dat[TS, ]$PP)
premium = cbind(preddts, predots, cost)
colnames(premium) = c("Deault ", "Optim  ", "Perfect")
LorenzCurve(cost, premium)



5.7 Overall Lorenz curve
predglmTest = as.vector(h2o.predict(glm, as.h2o(dat[TS, ]))) * dat[TS,]$InsuredValue 
predgbmTest = predict(gbm.final, datTS, n.trees = 750) * dat[TS,]$InsuredValue 
predxgbTest = (predict(xgb, data.matrix(datTS)) / 1e6) *  dat[TS, ]$InsuredValue 
predrfTest = predict(rf, datTS) * dat[TS, ]$InsuredValue
predsvmTest =  predict(svm.final, datTS) * dat[TS, ]$InsuredValue

premium = as.matrix(NA)
cost = as.vector(dat[TS,]$PP)
premium = cbind(predxgbTest, predgbmTest, predglmTest, predsvmTest, predrfTest, cost)

", "MP   ")colnames(premium) = c("XGB", "GBM", "GLM", "SVM", "RF
LorenzCurve(cost, premium)

6 Shiny app
6.1 User interface
library(shiny)
library(shinythemes)
library(shinydashboard)

dashboardPage(
dashboardHeader(title = "Reinsurance modeling", titleWidth = 240),
dashboardSidebar(

width = 240,
sidebarMenu(

id = "tabs",
menuItem("Table", tabName = "table", icon = icon("table")),
menuItem(

"Choice of a treaty",
tabName = "plot",
icon = icon("dollar")

),
menuItem("Code", tabName = "code", icon = icon("file-code-o")),
menuItem(

"About",
tabName = "about",
icon = icon("question"),
selected = TRUE

)
)

),
dashboardBody(

tags$style(
"
b
-
o
m
d
o
y
z-

{
transform: scale(0.94, 0.94); /* Moz-browsers */

zoom: 0.94; /* Other non-webkit browsers */
zoom: 94%; /* Webkit browsers */
}
"

),
theme = shinytheme("cosmo"),
tags$head(tags$style(

HTML('.content{
background-color: #ffffff; }'))),

tabItems(
tabItem(tabName = "plot",

fluidRow(
column(

4,
wellPanel(



h4(strong("Parameters")),

sliderInput(
"year",
"Number of years simulated :",
min = 100,
max = 5000,
value = 400,
step = 100

),

checkboxInput('xs', 'Excess of Loss', value = TRUE),

checkboxInput('sl', 'Stop-Loss', value = FALSE),

conditionalPanel(
condition = "input.xs == true",
sliderInput(

"valuexs",
label = "XS priority and line",
min = 0,
max = 25e7,
value = c(2e7, 5e7),
step = 1e7

)
),

conditionalPanel(
condition = "input.sl == true",
sliderInput(

"slline",
"StopLoss line",
min = 0,
max = 25e7,
value = 1e8,
step = 2e7

)
)

),
wellPanel(

h4(strong("Results")),
textOutput("text1"),
textOutput("text2"),
textOutput("text3"),
textOutput("text4"),
textOutput("text5"),
textOutput("text6"),
textOutput("text7"),
textOutput("text8"),
textOutput("text9")

),
br(),
br(),
br(),
br(),
br(),
br(),
br(),
br(),
br(),
br()

),
column(8,



plotOutput("distPlot", height = 770))
)),

tabItem(
tabName = "table",
box(

width = NULL,
status = "primary",
solidHeader = TRUE,
title = "Tables",
selectInput(

"dataset",
"Choose a dataset:",
choices = c("SiteInfo", "EventLossTableBySite", "expo_sample")

),
downloadButton('downloadTable', 'Download'),
br(),
br(),
dataTableOutput('table')

),
br(),
br(),
br(),
br(),
br(),
br(),
br(),
br(),
br(),
br()

),
tabItem(

tabName = "code",
includeHTML("Final.html"),
br(),
br(),
br(),
br(),
br(),
br(),
br(),
br(),
br(),
br(),
br()

),

tabItem(tabName = 'about',
fluidRow(

column(
6,
includeMarkdown('about.Rmd')
,
br(), 
br(), 
br(), 
br(), 
br(), 
br(), 
br(), 
br(), 
br()

),
fluidRow(column(



in R :"),

6,
p("Understanding our project through word cloud using text mining

plotOutput("cloud"),
sidebarPanel(

width = 10,
sliderInput(

"freq",
"Minimum Frequency:",
min = 1,
max = 50,
value = 15

),
sliderInput(

"max",
"Maximum Number of Words:",
min = 1,
max = 100,
value = 100
))))))))))

6.2 Server
rm(list = ls())

library(shiny)
library(ggplot2)
library(readr)
library(RColorBrewer) #display.brewer.all()
library("tm")
library("SnowballC")
library("wordcloud")

shinyServer(function(input, output, session) {
load("d.RData")
YLT = NULL
ELT <- read.csv(file = "EventLossTableBySite.csv", row.names = 1)
EventLossTableBySite <- ELT
SiteInfo <- read.csv(file = "SiteInfo.csv", row.names = 1)
expo_sample <- read.csv(file = "expo_sample.csv", row.names = 1)

output$cloud <-
renderPlot({

wordcloud(
words = d$word,
freq = d$freq,
scale = c(4, 0.5),
min.freq = input$freq,
max.words = input$max,
colors = brewer.pal(8, "Dark2")

)
})

observe({
xsline <- input$valuexs[2]
if (input$xs == TRUE) {

updateSliderInput(session, "slline",  min = xsline)
}
else{

updateSliderInput(session, "slline",  min = 0)
}

})

values <- reactiveValues()



ELTR <- reactive({
xs = NULL ; sl = NULL 
ELT <-

read.csv(file = "EventLossTableBySite.csv", row.names = 1)
if (input$xs == TRUE) {

xs[1] = input$valuexs[1]
xs[2] = input$valuexs[2]
ELT$XS = 0
ELT[which((ELT$Loss < xs[2]) &

(ELT$Loss >= xs[1])), ]$XS = ELT[which((ELT$Loss < xs[2]) &
(ELT$Loss >= xs[1])), ]$L

oss - xs[1]
ELT[which((ELT$Loss >= xs[2]) &

(ELT$Loss >= xs[1])), ]$XS = xs[2] - xs[1]
ELT$PPXS = ELT$Freq * ELT$XS
ELT$VarXS = 0
ELT[which(ELT$XS != 0), ]$VarXS = ELT[which(ELT$XS != 0), ]$Loss *

(1 - ELT[which(ELT$XS != 0), ]$Freq) * ELT[which(ELT$XS != 0), ]$Freq
ELT$PTXS = (ELT$PPXS + 0.10 * ELT$VarXS) / (1 - .10)

}
if (input$sl == TRUE) {

sl = input$slline
ELT$SL = 0
ELT[which(ELT$Loss >= sl), ]$SL = ELT[which(ELT$Loss >= sl), ]$Loss - sl
ELT$PPSL = ELT$Freq * ELT$SL
ELT$VarSL = 0
ELT[which(ELT$SL != 0), ]$VarSL = ELT[which(ELT$SL != 0), ]$Loss *

(1 - ELT[which(ELT$SL != 0), ]$Freq) * ELT[which(ELT$SL != 0), ]$Freq ELT
$PTSL = (ELT$PPSL + 0.10 * sqrt(ELT$VarSL)) / (1 - .10)

}
return(ELT)

})

YLTR <- reactive({
i = input$year
YLT = NULL
for (j in 1:i) {

YLT = rbind(YLT, ELT[which(ELT$Freq >= runif(length(ELT$Freq), 0, 1)), ])
}
YLT$Event = 1:dim(YLT)[1]
YLT$Treaty = "Net Losses"
return(YLT)

})

YLTR2 <- reactive({
YLT <- YLTR()
n = dim(YLT)[1]
Y = YLT
if (input$xs == TRUE) {

y1 = input$valuexs[1]
y2 = input$valuexs[2]
if (dim(YLT[which(YLT$Loss >= y2),])[1] != 0) {

y = YLT[which(YLT$Loss >= y2),]
a = y$Event
yy = y
yy$Loss = min(y2, y$Loss) - y1
yy$Treaty = "Ceded XS"
y$Treaty = "Net Losses "
y$Loss = y$Loss - y2
YLT[which(YLT$Loss > y2),]$Loss = y1
YLT = rbind(YLT, y, yy)

}
else{

a = 0
}
if (dim(YLT[which((y1 <= YLT[1:n,]$Loss) &

(YLT[1:n,]$Loss <= y2) &
(match(YLT[1:n,]$Event, a, nomatch = 0) == 0)),])[1] != 0) {

y = YLT[which((y1 <= YLT[1:n,]$Loss) &
(YLT[1:n,]$Loss <= y2) &
(match(YLT[1:n,]$Event, a, nomatch = 0) == 0)),]

YLT[which((y1 <= YLT[1:n,]$Loss) &



(YLT[1:n,]$Loss <= y2) &
(match(YLT[1:n,]$Event, a, nomatch = 0) == 0)),]$Loss = y1

y$Treaty = "Ceded XS"
y$Loss = y$Loss - y1
YLT = rbind(YLT, y)

}
}
if (input$sl == TRUE) {

y3 = input$slline
if (dim(Y[which(Y$Loss - y3 >= 0),])[1] > 0) {

YY = Y[which(Y$Loss - y3 >= 0),]
YY$Loss = YY$Loss - y3
YY$Treaty = 'Ceded Stop-Loss'
c = YY$Event
if (input$xs == TRUE) {

YLT[which((match(YLT$Event, c, nomatch = 0) != 0) &
(YLT$Treaty == 'Net Losses ')),]$Loss = YLT[which((match(YLT$E

0)
vent, c, nomatch =

!= 0) &
(YLT$Treat

y == 'Net Losses ')),]$Loss - YY$Loss
}
else{

YLT[which((match(YLT$Event, c, nomatch = 0) != 0) &
(YLT$Treaty == 'Net Losses')),]$Loss = YLT[which((match(YLT$Ev

0) !
ent, c, nomatch =

= 0) &
(YLT$Treaty

== 'Net Losses')),]$Loss - YY$Loss
}
YLT = rbind(YLT, YY)

}
}

YLT = YLT[order(YLT$Loss),]
YLT <-

within(YLT, Treaty <-
factor(

Treaty,
levels = c('Ceded Stop-Loss', 'Net Losses ', "Ceded XS", 'Net Losse

s')
))

return(YLT)
})

output$distPlot <- renderPlot({
y1 = -1e10
y2 = -1e10
y3 = -1e10
YLT <- YLTR2()
ELT <- ELTR()
values$v1 = length(unique(YLT$Event))
values$v2 = sum(YLT$Loss) / input$year
values$v3 = sum(YLT[which(YLT$Treaty == 'Ceded XS'),]$Loss) / input$year
values$v4 = sum(YLT[which(YLT$Treaty == 'Ceded Stop-Loss'),]$Loss) /

input$year
values$v5 = sum(YLT[which((YLT$Treaty == 'Net Losses') |

(YLT$Treaty == 'Net Losses ')),]$Loss) /
input$year

values$v6 = sum(ELT$PPXS)
values$v7 = sum(ELT$PTXS)
values$v8 = sum(ELT$PPSL)
values$v9 = sum(ELT$PTSL)

if (input$xs == TRUE) {
y1 = input$valuexs[1]
y2 = input$valuexs[2]

}
if (input$sl == TRUE) {



y3 = input$slline
}

ggplot(YLT) +   geom_col(aes(x = Event, y = Loss, fill = Treaty), width =
7) +

scale_fill_manual(
values = c(

'Ceded Stop-Loss' = '#7401DF',
'Net Losses ' = '#606060',
'Ceded XS' = '#428BCA',
'Net Losses' = '#606060'

),
limits = c('Net Losses ', 'Ceded XS', 'Ceded Stop-Loss')

) +
geom_abline(intercept = y1, col = '#428BCA') + geom_abline(intercept = y2, col

= '#428BCA') + geom_abline(intercept = y3, col = '#7401DF') +
theme(

legend.title = element_blank(),
axis.text.x = element_blank(),
axis.title.x = element_blank(),
axis.ticks.x = element_blank()

)
})

output$text1 <- renderText({
paste("Number of claims in ", input$year, " year : ", values$v1)

})
output$text2 <- renderText({

paste('Loss per year: $',
format(

round(as.numeric(values$v2), 0),
nsmall = 0,
big.mark = ","

),
sep = "")

})

observe({
xs <- input$xs
sl <- input$sl
if (xs == TRUE) {

output$text3 <- renderText({
paste('Ceded XS per year : $',

format(
round(as.numeric(values$v3), 0),
nsmall = 0,
big.mark = ","

),
sep = "")

})
output$text6 <- renderText({

paste('XS Pure premium : $',
format(

round(as.numeric(values$v6), 0),
nsmall = 0,
big.mark = ","

),
sep = "")

})
output$text7 <- renderText({

paste('XS Techinal premium  : $',
format(

round(as.numeric(values$v7), 0),
nsmall = 0,
big.mark = ","

),
sep = "")

})

}
else{

output$text3 <- renderText({

})



output$text6 <- renderText({

})
output$text7 <- renderText({

})
}

if (sl == TRUE) {
output$text4 <- renderText({

paste('Ceded Stop-Loss per year : $',
format(

round(as.numeric(values$v4), 0),
nsmall = 0,
big.mark = ","

),
sep = "")

})
output$text8 <- renderText({

paste('Stop-Loss Pure premium : $',
format(

round(as.numeric(values$v8), 0),
nsmall = 0,
big.mark = ","

))
})
output$text9 <- renderText({

paste('Stop-Loss Techinal premium  : $',
format(

round(as.numeric(values$v9), 0),
nsmall = 0,
big.mark = ","

),
sep = "")

})
}

else{
output$text4 <- renderText({

})
output$text8 <- renderText({

})
output$text9 <- renderText({

})
}
if ((sl == TRUE) | (xs == TRUE)) {

output$text5 <- renderText({
paste('Net Losses per year: $',

format(
round(as.numeric(values$v5), 0),
nsmall = 0,
big.mark = ","

),
sep = "")

})
}
else{

output$text5 <- renderText({

})
}

datasetInput <- reactive({
ELT <- read.csv(file = "EventLossTableBySite.csv", row.names = 1)
EventLossTableBySite <- ELT
SiteInfo <- read.csv(file = "SiteInfo.csv", row.names = 1)
expo_sample <-

read.csv(file = "expo_sample.csv", row.names = 1)
switch(

input$dataset,
"EventLossTableBySite" = EventLossTableBySite,
"SiteInfo" = SiteInfo,
"expo_sample" = expo_sample



)
})

output$table <- renderDataTable({
datasetInput()

}, options = list(
autoWidth = TRUE,
pageLength = 14,
lengthMenu = c(15, 50, 100, 500)

))

output$downloadTable <- downloadHandler(
filename = function() {

paste(input$dataset, '.csv', sep = '')
},
content = function(file) {

write.csv(datasetInput(), file)
}

)
})

})
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